THE RUST
PROGRAMMING
LANGUAGE

CONTENTS IN DETAIL

1. TITLE PAGE
2. COPYRIGHT
3. ABOUT THE AUTHORS
4. FOREWORD
5. PREFACE
6. ACKNOWLEDGMENTS
7. INTRODUCTION
1. Who Rust Is For
1. Teams of Developers
2. Students
3. Companies
4. Open Source Developers
5. People Who Value Speed and Stability,
2. Who This Book Is For
3. How to Use This Book

4. Resources and How to Contribute to This Book
8. CHAPTER 1: GETTING STARTED
1. Installation

1. Installing rustup on Linux or macOS

. Installing rustup on Windows

2
3. Troubleshooting
4. Updating and Uninstalling

5. Local Documentation
2. Hello, World!

1. Creating a Project Directory,

No

. Writing and Running a Rust Program

w

. Anatomy of a Rust Program

IN

. Compiling and Running Are Separate Steps

3. Hello, Cargo!

[N

. Creating a Project with Cargo

No

. Building and Running a Cargo Project

3. Building for Release

4. Cargo as Convention

4. Summary,
9. CHAPTER 2: PROGRAMMING A GUESSING GAME
1. Setting Up a New Project
2. Processing a Guess
1. Storing Values with Variables
2. Receiving User Input
3. Handling Potential Failure with Result

4. Printing Values with println! Placeholders

5. Testing the First Part
3. Generating a Secret Number

1. Using a Crate to Get More Functionality

2. Generating a Random Number

4. Comparing the Guess to the Secret Number

5. Allowing Multiple Guesses with [.ooping
1. Quitting After a Correct Guess
2. Handling Invalid Input
6. Summary
10. CHAPTER 3: COMMON PROGRAMMING CONCEPTS
1. Variables and Mutability
1. Constants
2. Shadowing
2. Data Types
1. Scalar Types
2. Compound Types
3. Functions
1. Parameters
2. Statements and Expressions
3. Functions with Return Values
4. Comments

5. Control Flow

1. if Expressions

2. Repetition with L.oops

6. Summary
11. CHAPTER 4: UNDERSTANDING OWNERSHIP
1. What Is Ownership?

1. Ownership Rules

2. Variable Scope

3. The String Type
4. Memory_and Allocation
5. Ownership and Functions
6. Return Values and Scope
2. References and Borrowing
1. Mutable References
2. Dangling References
3. The Rules of References
3. The Slice Type
1. String Slices
2. Other Slices
4. Summary,
12. CHAPTER 5: USING STRUCTS TO STRUCTURE REILATED DA
TA
1. Defining and Instantiating Structs
1. Using the Field Init Shorthand
2. Creating Instances from Other Instances with Struct Update Synta
X

3. Using Tuple Structs Without Named Fields to Create Different Typ

es
4. Unit-Like Structs Without Any Fields

2. An Example Program Using Structs

1. Refactoring with Tuples

2. Refactoring with Structs: Adding More Meaning

3. Adding Useful Functionality with Derived Traits

3. Method Syntax
1. Defining Methods
2. Methods with More Parameters
3. Associated Functions
4. Multiple impl Blocks
4. Summary,
13. CHAPTER 6: ENUMS AND PATTERN MATCHING
1. Defining an Enum

1. Enum Values

2. The Option Enum and Its Advantages Over Null Values
2. The match Control Flow Construct

1. Patterns That Bind to Values

2. Matching with Option<T>

3. Matches Are Exhaustive
4. Catch-All Patterns and the Placeholder

3. Concise Control Flow with if let

4. Summary,

14. CHAPTER 7: MANAGING GROWING PROJECTS WITH PACK
AGES, CRATES, AND MODULES
1. Packages and Crates

2. Defining Modules to Control Scope and Privacy

3. Paths for Referring to an Item in the Module Tree

1. Exposing Paths with the pub Keyword

2. Starting Relative Paths with super
3. Making Structs and Enums Public

4. Bringing Paths into Scope with the use Keyword

5.
6.

1. Creating Idiomatic use Paths

2. Providing New Names with the as Keyword

3. Re-exporting Names with pub use

N

. Using External Packages

Ul

. Using Nested Paths to Clean Up Large use Lists
. The Glob Operator

D

Separating Modules into Different Files

Summary

15. CHAPTER 8: COMMON COLLECTIONS

1.

2.

Storing Lists of Values with Vectors

1. Creating a New Vector

Updating a Vector

Reading Elements of Vectors

Iterating Over the Values in a Vector

Using an Enum to Store Multiple Types

Storing UTFE-8 Encoded Text with Strings

What Is a String?

Creating a New String

2.

3.

4.

5.

6. Dropping a Vector Drops Its Elements
St

1.

2.

3. Updating a String

4.

Indexing into Strings

5. Slicing Strings
6. Methods for Iterating Over Strings

7. Strings Are Not So Simple

3. Storing Keys with Associated Values in Hash Maps

1. Creating a New Hash Map

No

. Accessing Values in a Hash Map

W

. Hash Maps and Ownership
4. Updating a Hash Map
5. Hashing Functions
4. Summary,
16. CHAPTER 9: ERROR HANDLING
1. Unrecoverable Errors with panic!
2. Recoverable Errors with Result
1. Matching on Different Errors
2. Propagating Frrors
3. To panic! or Not to panic!
2. Cases in Which You Have More Information Than the Compiler
3. Guidelines for Error Handling
4. Creating Custom Types for Validation

4. Summary,
17. CHAPTER 10: GENERIC TYPES, TRAITS, AND LIFETIMES
1. Removing Duplication by Extracting a Function

2. Generic Data Types

1. In Function Definitions

2. In Struct Definitions

3. In Enum Definitions

4. In Method Definitions

5. Performance of Code Using Generics
3. Traits: Defining Shared Behavior

1. Defining a Trait

. Implementing a Trait on a Type

. Default Implementations

. Traits as Parameters

o U1 A~ W N

. Using Trait Bounds to Conditionally Implement Methods
4.

<

alidating References with Lifetimes
. Preventing Dangling References with Lifetimes

. The Borrow Checker

. Generic Lifetimes in Functions

. Lifetime Annotation Syntax

. Lifetime Annotations in Function Signatures
. Thinking in Terms of Lifetimes

. Lifetime Annotations in Struct Definitions

. Lifetime Elision

© o0 N O Ul A W N

. Lifetime Annotations in Method Definitions

10. The Static Lifetime

6. Summary
18. CHAPTER 11: WRITING AUTOMATED TESTS

1. How to Write Tests

1. The Anatomy of a Test Function

. Checking Results with the assert! Macro

. Testing Equality with the assert eq! and assert ne! Macros

. Adding Custom Failure Messages

. Checking for Panics with should panic

S U1 A~ W N

. Using Result<T, E> in Tests

2. Controlling How Tests Are Run

1. Running Tests in Parallel or Consecutively
2. Showing Function Output
3. Running a Subset of Tests by Name

4. Ignoring Some Tests Unless Specifically Requested

3. Test Organization
1. Unit Tests
2. Integration Tests
4. Summary,
19. CHAPTER 12: AN IO PROJECT: BUILDING A COMMAND LIN
E PROGRAM
1. Accepting Command Line Arguments
1. Reading the Argument Values
2. Saving the Argument Values in Variables

2. Reading a File

3. Refactoring to Improve Modularity and Error Handling
1. Separation of Concerns for Binary Projects
2. Fixing the Error Handling
3. Extracting Logic from main

4. Splitting Code into a Library Crate

4. Developing the Library’s Functionality with Test-Driven Developmen

t

1. Writing a Failing Test
2. Writing Code to Pass the Test

5. Working with Environment Variables

1. Writing a Failing Test for the Case-Insensitive Search Function
2. Implementing the search case insensitive Function

6. Writing Error Messages to Standard Error Instead of Standard Output
1. Checking Where Errors Are Written

2. Printing Errors to Standard Error
7. Summary,
20. CHAPTER 13: FUNCTIONAL LLANGUAGE FEATURES: ITERAT
ORS AND CIL.OSURES
1. Closures: Anonymous Functions That Capture Their Environment
1. Capturing the Environment with Closures
2. Closure Type Inference and Annotation

3. Capturing References or Moving Ownership

4. Moving Captured Values Out of Closures and the Fn Traits

2. Processing a Series of Items with Iterators

1. The Iterator Trait and the next Method

2. Methods That Consume the Iterator

3. Methods That Produce Other Iterators

4. Using Closures That Capture Their Environment

3. Improving Our I/O Project

1. Removing a clone Using an Iterator

2. Making Code Clearer with Iterator Adapters

3. Choosing Between Loops and Iterators

4. Comparing Performance: [.oops vs. Iterators
5. Summary,
21. CHAPTER 14: MORE ABOUT CARGO AND CRATES.IO
1. Customizing Builds with Release Profiles
2. Publishing a Crate to Crates.io
1. Making Useful Documentation Comments

. Exporting a Convenient Public API with pub use

. Setting Up a Crates.io Account
. Adding Metadata to a New Crate

. Publishing to Crates.io

S U1 A~ W N

. Publishing a New Version of an Existing Crate

7. Deprecating Versions from Crates.io with cargo yank

3. Cargo Workspaces

1. Creating a Workspace

2. Creating the Second Package in the Workspace

4. Installing Binaries with cargo install

5. Extending Cargo with Custom Commands
6. Summary
22. CHAPTER 15: SMART POINTERS

1. Using Box<T> to Point to Data on the Heap

1. Using Box<T> to Store Data on the Heap

2. Enabling Recursive Types with Boxes

2. Treating Smart Pointers Like Regular References with Deref

Following the Pointer to the Value

Using Box<T> Like a Reference

Defining Our Own Smart Pointer

1.
2.
3.
4. Implementing the Deref Trait
5. Implicit Deref Coercions with Functions and Methods
6.

How Deref Coercion Interacts with Mutability

3. Running Code on Cleanup with the Drop Trait

4. Rc<T>, the Reference Counted Smart Pointer

1. Using Rc<T> to Share Data

2. Cloning an Rc<T> Increases the Reference Count

5. RefCell<T> and the Interior Mutability Pattern

1. Enforcing Borrowing Rules at Runtime with RefCell<T>
2. Interior Mutability: A Mutable Borrow to an Immutable Value
3. Allowing Multiple Owners of Mutable Data with Rc<T> and RefC
ell<T>
6. Reference Cycles Can Leak Memory

1. Creating a Reference Cycle

2. Preventing Reference Cycles Using Weak<T>
7. Summary,
23. CHAPTER 16: FEARLESS CONCURRENCY
1. Using Threads to Run Code Simultaneously

1. Creating a New Thread with spawn

2. Waiting for All Threads to Finish Using join Handles
3. Using move Closures with Threads
2. Using Message Passing to Transfer Data Between Threads
1. Channels and Ownership Transference
2. Sending Multiple Values and Seeing the Receiver Waiting

3. Creating Multiple Producers by Cloning the Transmitter

3. Shared-State Concurrency

1. Using Mutexes to Allow Access to Data from One Thread at a Tim
e

2. Similarities Between RefCell<T>/Rc<T> and Mutex<T>/Arc<T>

4. Extensible Concurrency with the Send and Sync Traits
1. Allowing Transference of Ownership Between Threads with Send
2. Allowing Access from Multiple Threads with Sync
3. Implementing Send and Sync Manually Is Unsafe

5. Summary,

24. CHAPTER 17: OBJECT-ORIENTED PROGRAMMING FEATUR
ES
1. Characteristics of Object-Oriented [.anguages

1. Objects Contain Data and Behavior

2. Encapsulation That Hides Implementation Details
3. Inheritance as a Type System and as Code Sharing

2. Using Trait Objects That Allow for Values of Different Types

1. Defining a Trait for Common Behavior
2. Implementing the Trait
3. Trait Objects Perform Dynamic Dispatch

3. Implementing an Object-Oriented Design Pattern

1. Defining Post and Creating a New Instance in the Draft State

. Storing the Text of the Post Content

. Ensuring the Content of a Draft Post Is Empty,

. Requesting a Review Changes the Post’s State

uu B~ W N

. Adding approve to Change the Behavior of content

6. Trade-offs of the State Pattern
4. Summary,
25. CHAPTER 18: PATTERNS AND MATCHING
1. All the Places Patterns Can Be Used
1. match Arms
2. Conditional if let Expressions
3. while let Conditional L.oops
4. for Loops
5. let Statements
6. Function Parameters

2. Refutability: Whether a Pattern Might Fail to Match

3. Pattern Syntax

. Matching Literals
. Matching Named Variables
. Multiple Patterns

. Matching Ranges of Values with ..=

. Destructuring to Break Apart Values

. Ignoring Values in a Pattern

N O U AW N

. Extra Conditionals with Match Guards
8. @ Bindings
4. Summary,
26. CHAPTER 19: ADVANCED FEATURES
1. Unsafe Rust
1. Unsafe Superpowers
2. Dereferencing a Raw Pointer
3. Calling an Unsafe Function or Method
4. Accessing or Modifying a Mutable Static Variable
5. Implementing an Unsafe Trait
6. Accessing Fields of a Union
7. When to Use Unsafe Code
2. Advanced Traits
1. Associated Types
2. Default Generic Type Parameters and Operator Overloading
3
4
5

. Disambiguating Between Methods with the Same Name

. Using Supertraits

. Using the Newtype Pattern to Implement External Traits

3. Advanced Types
1. Using the Newtype Pattern for Type Safety and Abstraction

2. Creating Type Synonyms with Type Aliases

3. The Never Type That Never Returns

4. Dynamically Sized Types and the Sized Trait

4. Advanced Functions and Closures
1. Function Pointers
2. Returning Closures
5. Macros
1. The Difference Between Macros and Functions

2. Declarative Macros with macro rules! for General Metaprogramm

ing

. Procedural Macros for Generating Code from Attributes

3
4. How to Write a Custom derive Macro
5. Attribute-I.ike Macros
6. Function-Like Macros
6. Summary
27. CHAPTER 20: FINAL PROJECT: BUILDING AMULTITHREAD
ED WEB SERVER
1. Building a Single-Threaded Web Server

1. Listening to the TCP Connection

2. Reading the Request

3. A Closer L.ook at an HTTP Request
4

. Writing a Response

5. Returning Real HTML
7. A Touch of Refactoring

2. Turning Our Single-Threaded Server into a Multithreaded Server
1. Simulating a Slow Request

2. Improving Throughput with a Thread Pool

3. Graceful Shutdown and Cleanup
1. Implementing the Drop Trait on ThreadPool

2. Signaling to the Threads to Stop Listening for Jobs

4. Summary,
28. APPENDIX A: KEYWORDS
1. Keywords Currently in Use
2. Keywords Reserved for Future Use
3. Raw Identifiers

29. APPENDIX B: OPERATORS AND SYMBOL.S

1. Operators
2. Non-operator Symbols

30. APPENDIX C: DERIVABLE TRAITS
1. Debug for Programmer Output

. PartialEq_and Eq for Equality Comparisons

. PartialOrd and Ord for Ordering Comparisons

. Hash for Mapping_ a Value to a Value of Fixed Size

A U1~ W N
®
[e—
o
jum}
D
[aB)
=
[(m]
@
=}
o=
<
=
o
=1
-,
[
=
—
(@)
[aB]
il
j)
ga
s
[
c
D
[9p]

. Default for Default Values

31. APPENDIX D: USEFUL DEVELOPMENT TOOLS
1. Automatic Formatting with rustfmt

2. Fix Your Code with rustfix

3. More Lints with Clippy.

4. IDE Integration Using rust-analyzer
32. APPENDIX E: EDITIONS
33. INDEX

OceanofPDF.com

https://oceanofpdf.com/

THE RUST PROGRAMMING
LANGUAGE

2nd Edition

by Steve Klabnik and Carol Nichols, with contributions from the Rust

Community

0

no starch
press

San Francisco

OceanofPDF.com

https://oceanofpdf.com/

THE RUST PROGRAMMING LANGUAGE, 2ND EDITION. Copyright © 2023 by the Rust

Foundation and the Rust Project Developers.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information storage or

retrieval system, without the prior written permission of the copyright owner and the publisher.

Printed in the United States of America

First printing

272625242312345

ISBN-13: 978-1-7185-0310-6 (print)
ISBN-13: 978-1-7185-0311-3 (ebook)

Publisher: William Pollock

Managing Editor: Jill Franklin

Production Manager: Sabrina Plomitallo-Gonzélez

Production Editors: Jennifer Kepler and Katrina Horlbeck Olsen
Developmental Editor: Liz Chadwick

Cover Illustration: Karen Rustad Tdlva

Interior Design: Octopod Studios

Technical Reviewer: JT

Copyeditor: Audrey Doyle

Compositor: Jeff Lytle, Happenstance Type-O-Rama

Proofreader: Liz Wheeler

For information on distribution, bulk sales, corporate sales, or translations, please contact No Starch

Press, Inc. directly at info@nostarch.com or:

No Starch Press, Inc.

245 8th Street, San Francisco, CA 94103

phone: 1.415.863.9900

www.nostarch.com

The Library of Congress has catalogued the first edition as follows:

Names: Klabnik, Steve, author. | Nichols, Carol, 1983- eauthor.
Title: The Rust programming language / by Steve Klabnik and Carol Nichols ; with contributions
from
the Rust Community.
Description: San Francisco : No Starch Press, Inc., 2018. | Includes index. Identifiers: LCCN
2018014097 (print) | LCCN 2018019844 (ebook) | ISBN 9781593278519 (epub) | ISBN
1593278519 (epub)
| ISBN 9781593278281 (paperback) | ISBN 1593278284 (paperback)
Subjects: LCSH: Rust (Computer programming language) | BISAC: COMPUTERS / Programming /
Open Source.
| COMPUTERS / Programming Languages / General. | COMPUTERS / Programming / General.
Classification: LCC QA76.73.R87 (ebook) | LCC QA76.73.R87 K53 2018 (print) | DDC 005.13/3--
dc23
LC record available at https://lccn.loc.gov/2018014097

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc.
Other product and company names mentioned herein may be the trademarks of their respective
owners. Rather than use a trademark symbol with every occurrence of a trademarked name, we are
using the names only in an editorial fashion and to the benefit of the trademark owner, with no

intention of infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every
precaution has been taken in the preparation of this work, neither the authors nor No Starch Press,
Inc. shall have any liability to any person or entity with respect to any loss or damage caused or

alleged to be caused directly or indirectly by the information contained in it.

OceanofPDF.com

https://oceanofpdf.com/

About the Authors

Steve Klabnik was the lead for the Rust documentation team and was one
of Rust’s core developers. A frequent speaker and a prolific open source
contributor, he previously worked on projects such as Ruby and Ruby on

Rails.

Carol Nichols is a member of the Rust Crates.io Team and a former
member of the Rust Core Team. She’s a co-founder of Integer 32, LLC, the
world’s first Rust-focused software consultancy. Nichols has also organized

the Rust Belt Rust Conference.

About the Technical Reviewer

JT is a Rust core team member and the co-creator of the Rust error message
format, Rust Language Server (RLS), and Nushell. They first started using
Rust in 2011, and in 2016 joined Mozilla to work on Rust full-time, helping
to shape its direction for widespread use. These days, they are a freelance

Rust trainer and advocate for safe systems programming.

OceanofPDF.com

https://oceanofpdf.com/

FOREWORD

It wasn’t always so clear, but the Rust programming language is
fundamentally about empowerment: no matter what kind of code you are
writing now, Rust empowers you to reach further, to program with

confidence in a wider variety of domains than you did before.

Take, for example, “systems-level” work that deals with low-level details
of memory management, data representation, and concurrency.
Traditionally, this realm of programming is seen as arcane, accessible to
only a select few who have devoted the necessary years to learning it to
avoid its infamous pitfalls. And even those who practice it do so with

caution, lest their code be open to exploits, crashes, or corruption.

Rust breaks down these barriers by eliminating the old pitfalls and
providing a friendly, polished set of tools to help you along the way.
Programmers who need to “dip down” into lower-level control can do so
with Rust, without taking on the customary risk of crashes or security holes
and without having to learn the fine points of a fickle toolchain. Better yet,
the language is designed to guide you naturally toward reliable code that is

efficient in terms of speed and memory usage.

Programmers who are already working with low-level code can use Rust
to raise their ambitions. For example, introducing parallelism in Rust is a

relatively low-risk operation: the compiler will catch the classical mistakes

for you. And you can tackle more aggressive optimizations in your code
with the confidence that you won’t accidentally introduce crashes or

vulnerabilities.

But Rust isn’t limited to low-level systems programming. It’s expressive
and ergonomic enough to make CLI apps, web servers, and many other
kinds of code quite pleasant to write—you’ll find simple examples later in
the book. Working with Rust allows you to build skills that transfer from
one domain to another; you can learn Rust by writing a web app, then apply

those same skills to target your Raspberry Pi.

This book fully embraces the potential of Rust to empower its users. It’s
a friendly and approachable text intended to help you level up not just your
knowledge of Rust, but also your reach and confidence as a programmer in
general. So dive in, get ready to learn—and welcome to the Rust

community!

Nicholas Matsakis and Aaron Turon

OceanofPDF.com

https://oceanofpdf.com/

PREFACE

This version of the text assumes you’re using Rust 1.62.0 (released 2022-
06-30) or later with edition="2021" in the Cargo.toml file of all
projects to configure them to use Rust 2021 edition idioms. See
“Installation” on page 1 for instructions on installing or updating Rust, and

see Appendix E for information on editions.

The 2021 edition of the Rust language includes a number of
improvements that make Rust more ergonomic and that correct some
inconsistencies. On top of a general update to reflect these improvements,
this rendition of the book has a number of improvements to address specific

feedback:

o Chapter 7 contains a new quick reference section on organizing your
code into multiple files with modules.

e Chapter 13 has new and improved closure examples that more clearly
illustrate captures, the move keyword, and the Fn traits.

e We fixed a number of small errors and imprecise wording throughout the

book. Thank you to the readers who reported them!

Note that any code from earlier renditions of this book that compiled will
continue to compile with the relevant edition in the project’s Cargo.toml,
even as you update the Rust compiler version you’re using. That’s Rust’s

backward-compatibility guarantees at work!

OceanofPDF.com

https://oceanofpdf.com/

ACKNOWLEDGMENTS

We would like to thank everyone who has worked on the Rust language for
creating an amazing language worth writing a book about. We’re grateful to
everyone in the Rust community for being welcoming and creating an

environment worth welcoming more folks into.

We’re especially thankful for everyone who read early versions of this
book online and provided feedback, bug reports, and pull requests. Special
thanks to Eduard-Mihai Burtescu, Alex Crichton, and JT for providing
technical review, and to Karen Rustad T6lva for the cover art. Thank you to
our team at No Starch, including Bill Pollock, Liz Chadwick, and Janelle

Ludowise, for improving this book and bringing it to print.

Carol is grateful for the opportunity to work on this book. She thanks her
family for their constant love and support, especially her husband, Jake

Goulding, and her daughter, Vivian.

OceanofPDF.com

https://oceanofpdf.com/

INTRODUCTION

Welcome to The Rust Programming Language, an
introductory book about Rust. The Rust programming
language helps you write faster, more reliable software.

/ High-level ergonomics and low-level control are often at

odds in programming language design; Rust challenges that

conflict. Through balancing powerful technical capacity and
a great developer experience, Rust gives you the option to control low-level
details (such as memory usage) without all the hassle traditionally

associated with such control.

Who Rust Is For

Rust is ideal for many people for a variety of reasons. Let’s look at a few of

the most important groups.
Teams of Developers

Rust is proving to be a productive tool for collaborating among large teams
of developers with varying levels of systems programming knowledge.
Low-level code is prone to various subtle bugs, which in most other
languages can only be caught through extensive testing and careful code
review by experienced developers. In Rust, the compiler plays a gatekeeper

role by refusing to compile code with these elusive bugs, including

concurrency bugs. By working alongside the compiler, the team can spend

their time focusing on the program’s logic rather than chasing down bugs.

Rust also brings contemporary developer tools to the systems

programming world:

e Cargo, the included dependency manager and build tool, makes adding,
compiling, and managing dependencies painless and consistent across
the Rust ecosystem.

e The rustfmt formatting tool ensures a consistent coding style across
developers.

e The Rust Language Server powers integrated development environment

(IDE) integration for code completion and inline error messages.

By using these and other tools in the Rust ecosystem, developers can be

productive while writing systems-level code.

Students

Rust is for students and those who are interested in learning about systems
concepts. Using Rust, many people have learned about topics like operating
systems development. The community is very welcoming and happy to
answer students’ questions. Through efforts such as this book, the Rust
teams want to make systems concepts more accessible to more people,

especially those new to programming.

Companies

Hundreds of companies, large and small, use Rust in production for a
variety of tasks, including command line tools, web services, DevOps
tooling, embedded devices, audio and video analysis and transcoding,
cryptocurrencies, bioinformatics, search engines, Internet of Things
applications, machine learning, and even major parts of the Firefox web

browser.
Open Source Developers

Rust is for people who want to build the Rust programming language,
community, developer tools, and libraries. We’d love to have you contribute

to the Rust language.

People Who Value Speed and Stability

Rust is for people who crave speed and stability in a language. By speed,
we mean both how quickly Rust code can run and the speed at which Rust
lets you write programs. The Rust compiler’s checks ensure stability
through feature additions and refactoring. This is in contrast to the brittle
legacy code in languages without these checks, which developers are often
afraid to modify. By striving for zero-cost abstractions—higher-level
features that compile to lower-level code as fast as code written manually—

Rust endeavors to make safe code be fast code as well.

The Rust language hopes to support many other users as well; those
mentioned here are merely some of the biggest stakeholders. Overall, Rust’s
greatest ambition is to eliminate the trade-offs that programmers have
accepted for decades by providing safety and productivity, speed and

ergonomics. Give Rust a try and see if its choices work for you.

Who This Book Is For

This book assumes that you’ve written code in another programming
language, but doesn’t make any assumptions about which one. We’ve tried
to make the material broadly accessible to those from a wide variety of
programming backgrounds. We don’t spend a lot of time talking about what
programming is or how to think about it. If you’re entirely new to
programming, you would be better served by reading a book that

specifically provides an introduction to programming.

How to Use This Book

In general, this book assumes that you’re reading it in sequence from front
to back. Later chapters build on concepts in earlier chapters, and earlier
chapters might not delve into details on a particular topic but will revisit the

topic in a later chapter.

You’ll find two kinds of chapters in this book: concept chapters and
project chapters. In concept chapters, you’ll learn about an aspect of Rust.
In project chapters, we’ll build small programs together, applying what
you’ve learned so far. Chapter 2, Chapter 12, and Chapter 20 are project

chapters; the rest are concept chapters.

Chapter 1 explains how to install Rust, how to write a “Hello, world!”

program, and how to use Cargo, Rust’s package manager and build tool.

Chapter 2 is a hands-on introduction to writing a program in Rust, having
you build up a number-guessing game. Here, we cover concepts at a high
level, and later chapters will provide additional detail. If you want to get
your hands dirty right away, Chapter 2 is the place for that. Chapter 3
covers Rust features that are similar to those of other programming
languages, and in Chapter 4 you’ll learn about Rust’s ownership system. If
you’re a particularly meticulous learner who prefers to learn every detail
before moving on to the next, you might want to skip Chapter 2 and go
straight to Chapter 3, returning to Chapter 2 when you’d like to work on a

project applying the details you’ve learned.

Chapter 5 discusses structs and methods, and Chapter 6 covers enums,
match expressions, and the if let control flow construct. You’ll use

structs and enums to make custom types in Rust.

In Chapter 7, you’ll learn about Rust’s module system and about privacy
rules for organizing your code and its public application programming
interface (API). Chapter 8 discusses some common collection data
structures that the standard library provides, such as vectors, strings, and
hash maps. Chapter 9 explores Rust’s error-handling philosophy and

techniques.

Chapter 10 digs into generics, traits, and lifetimes, which give you the
power to define code that applies to multiple types. Chapter 11 is all about

testing, which even with Rust’s safety guarantees is necessary to ensure

your program’s logic is correct. In Chapter 12, we’ll build our own
implementation of a subset of functionality from the grep command line
tool that searches for text within files. For this, we’ll use many of the

concepts we discussed in the previous chapters.

Chapter 13 explores closures and iterators: features of Rust that come
from functional programming languages. In Chapter 14, we’ll examine
Cargo in more depth and talk about best practices for sharing your libraries
with others. Chapter 15 discusses smart pointers that the standard library

provides and the traits that enable their functionality.

In Chapter 16, we’ll walk through different models of concurrent
programming and talk about how Rust helps you program in multiple
threads fearlessly. Chapter 17 looks at how Rust idioms compare to object-

oriented programming principles you might be familiar with.

Chapter 18 is a reference on patterns and pattern matching, which are
powerful ways of expressing ideas throughout Rust programs. Chapter 19
contains a smorgasbord of advanced topics of interest, including unsafe
Rust, macros, and more about lifetimes, traits, types, functions, and

closures.

In Chapter 20, we’ll complete a project in which we’ll implement a low-

level multithreaded web server!

Finally, some appendixes contain useful information about the language
in a more reference-like format. Appendix A covers Rust’s keywords,
Appendix B covers Rust’s operators and symbols, Appendix C covers
derivable traits provided by the standard library, Appendix D covers some

useful development tools, and Appendix E explains Rust editions.

There is no wrong way to read this book: if you want to skip ahead, go
for it! You might have to jump back to earlier chapters if you experience

any confusion. But do whatever works for you.

An important part of the process of learning Rust is learning how to read
the error messages the compiler displays: these will guide you toward
working code. As such, we’ll provide many examples that don’t compile
along with the error message the compiler will show you in each situation.
Know that if you enter and run a random example, it may not compile!
Make sure you read the surrounding text to see whether the example you’re
trying to run is meant to error. In most situations, we’ll lead you to the

correct version of any code that doesn’t compile.

Resources and How to Contribute to This Book

This book is open source. If you find an error, please don’t hesitate to file

an issue or send a pull request on GitHub at https://github.com/rust-lang/bo
ok. Please see CONTRIBUTING.md at https://github.com/rust-lang/book/bl
ob/main/CONTRIBUTING.md for more details.

https://github.com/rust-lang/book
https://github.com/rust-lang/book/blob/main/CONTRIBUTING.md

The source code for the examples in this book, errata, and other

information are available at https://nostarch.com/rust-programming-langua

ge-2nd-edition.

OceanofPDF.com

https://nostarch.com/rust-programming-language-2nd-edition
https://oceanofpdf.com/

1
GETTING STARTED

Let’s start your Rust journey! There’s a lot to learn, but
every journey starts somewhere. In this chapter, we’ll

discuss:

Installing Rust on Linux, macOS, and Windows
e Writing a program that prints Hello, world!

e Using cargo, Rust’s package manager and build system

Installation

The first step is to install Rust. We’ll download Rust through rustup, a
command line tool for managing Rust versions and associated tools. You’ll

need an internet connection for the download.

If you prefer not to use rustup for some reason, please see the
Other Rust Installation Methods page at https://forge.rust-lang.org/i

nfra/other-installation-methods.html for more options.

The following steps install the latest stable version of the Rust compiler.
Rust’s stability guarantees ensure that all the examples in the book that
compile will continue to compile with newer Rust versions. The output
might differ slightly between versions because Rust often improves error
messages and warnings. In other words, any newer, stable version of Rust
you install using these steps should work as expected with the content of

this book.

COMMAND LINE NOTATION

In this chapter and throughout the book, we’ll show some commands used in the terminal. Lines
that you should enter in a terminal all start with $. You don’t need to type the $ character; it’s
the command line prompt shown to indicate the start of each command. Lines that don’t start
with $ typically show the output of the previous command. Additionally, PowerShell-specific

examples will use > rather than $.

https://forge.rust-lang.org/infra/other-installation-methods.html

Installing rustup on Linux or macOS

If you’re using Linux or macOS, open a terminal and enter the following

command:

$ curl --proto '=https' --tlsvl.3 https://sh.rust

4

The command downloads a script and starts the installation of the
rustup tool, which installs the latest stable version of Rust. You might
be prompted for your password. If the install is successful, the following

line will appear:

Rust i1s installed now. Great!

You will also need a linker, which is a program that Rust uses to join its
compiled outputs into one file. It is likely you already have one. If you get
linker errors, you should install a C compiler, which will typically include a
linker. A C compiler is also useful because some common Rust packages

depend on C code and will need a C compiler.

On macQS, you can get a C compiler by running;:

$ xcode-select --install

Linux users should generally install GCC or Clang, according to their
distribution’s documentation. For example, if you use Ubuntu, you can

install the build-essential package.

Installing rustup on Windows

On Windows, go to https:/www.rust-lang.org/tools/install and follow the
instructions for installing Rust. At some point in the installation, you’ll
receive a message explaining that you’ll also need the MSVC build tools

for Visual Studio 2013 or later.

To acquire the build tools, you’ll need to install Visual Studio 2022 from

https://visualstudio.microsoft.com/downloads. When asked which

workloads to install, include:

e “Desktop Development with C++”
e The Windows 10 or 11 SDK
e The English language pack component, along with any other language

pack of your choosing

The rest of this book uses commands that work in both cmd.exe and

PowerShell. If there are specific differences, we’ll explain which to use.

https://www.rust-lang.org/tools/install
https://visualstudio.microsoft.com/downloads

Troubleshooting

To check whether you have Rust installed correctly, open a shell and enter

this line:

$ rustc --version

You should see the version number, commit hash, and commit date for

the latest stable version that has been released, in the following format:

rustc x.y.z (abcabcabc yyyy-mm-dd)

If you see this information, you have installed Rust successfully! If you
don’t see this information, check that Rust is in your %PATH% system

variable as follows.

In Windows CMD, use:

> echo %PATH%

In PowerShell, use:

> echo $env:Path

In Linux and macOS, use:

$ echo $PATH

If that’s all correct and Rust still isn’t working, there are a number of
places you can get help. Find out how to get in touch with other Rustaceans
(a silly nickname we call ourselves) on the community page at https:/www.

rust-lang.org/community.
Updating and Uninstalling

Once Rust is installed via rustup , updating to a newly released version

is easy. From your shell, run the following update script:

$ rustup update

To uninstall Rust and rustup , run the following uninstall script from

your shell:

$ rustup self uninstall

Local Documentation

The installation of Rust also includes a local copy of the documentation so

that you can read it offline. Run rustup doc to open the local

https://www.rust-lang.org/community

documentation in your browser.

Any time a type or function is provided by the standard library and
you’re not sure what it does or how to use it, use the application

programming interface (API) documentation to find out!

Hello, World!

Now that you’ve installed Rust, it’s time to write your first Rust program.
It’s traditional when learning a new language to write a little program that

prints the text Hello, world! to the screen, so we’ll do the same here!

NOTE

This book assumes basic familiarity with the command line. Rust
makes no specific demands about your editing or tooling or where
your code lives, so if you prefer to use an integrated development
environment (IDE) instead of the command line, feel free to use your
favorite IDE. Many IDEs now have some degree of Rust support;
check the IDE’s documentation for details. The Rust team has been
focusing on enabling great IDE support via rust-analyzer .

See Appendix D for more details.

Creating a Project Directory

You’ll start by making a directory to store your Rust code. It doesn’t matter
to Rust where your code lives, but for the exercises and projects in this
book, we suggest making a projects directory in your home directory and

keeping all your projects there.

Open a terminal and enter the following commands to make a projects
directory and a directory for the “Hello, world!” project within the projects

directory.

For Linux, macOS, and PowerShell on Windows, enter this:

$ mkdir ~/projects
$ cd ~/projects
$ mkdir hello_world
$ cd hello_world

For Windows CMD, enter this:

mkdir "%USERPROFILE%\projects"
cd /d "%USERPROFILE%\projects"
mkdir hello_world

cd hello_world

vV V V V

Writing and Running a Rust Program

Next, make a new source file and call it main.rs. Rust files always end with
the .rs extension. If you’re using more than one word in your filename, the
convention is to use an underscore to separate them. For example, use

hello_world.rs rather than helloworld.rs.

Now open the main.rs file you just created and enter the code in Listing 1

-1.

main.rs

fn main() {
println!("Hello, world!");

Listing 1-1: A program that prints Hello, world!

Save the file and go back to your terminal window in the
~/projects/hello_world directory. On Linux or macOS, enter the following

commands to compile and run the file:

$ rustc main.rs
$./main
Hello, world!

On Windows, enter the command .\main.exe instead of ./main:

> rustc main.rs
> ,\main.exe
Hello, world!

Regardless of your operating system, the string Hello, world!
should print to the terminal. If you don’t see this output, refer back to

“Troubleshooting” on page 3 for ways to get help.

If Hello, world! did print, congratulations! You’ve officially

written a Rust program. That makes you a Rust programmer—welcome!
Anatomy of a Rust Program

Let’s review this “Hello, world!” program in detail. Here’s the first piece of

the puzzle:

fn main() {

These lines define a function named main . The main function is
special: it is always the first code that runs in every executable Rust

program. Here, the first line declares a function named main that has no

parameters and returns nothing. If there were parameters, they would go

inside the parentheses () .

The function body is wrapped in {} . Rust requires curly brackets
around all function bodies. It’s good style to place the opening curly bracket

on the same line as the function declaration, adding one space in between.

If you want to stick to a standard style across Rust projects, you can
use an automatic formatter tool called rustfmt to format your

code in a particular style (more on rustfmt in Appendix D). The
Rust team has included this tool with the standard Rust distribution,

as rustc is, so it should already be installed on your computer!

The body of the main function holds the following code:

println!("Hello, world!");

This line does all the work in this little program: it prints text to the

screen. There are four important details to notice here.

First, Rust style is to indent with four spaces, not a tab.

Second, println! calls a Rust macro. If it had called a function
instead, it would be entered as println (without the !). We’ll discuss
Rust macros in more detail in Chapter 19. For now, you just need to know
that using a ! means that you’re calling a macro instead of a normal

function and that macros don’t always follow the same rules as functions.

Third, you see the "Hello, world!" string. We pass this string as

an argument to println! , and the string is printed to the screen.

Fourth, we end the line with a semicolon (;), which indicates that this
expression is over and the next one is ready to begin. Most lines of Rust

code end with a semicolon.
Compiling and Running Are Separate Steps

You’ve just run a newly created program, so let’s examine each step in the

process.

Before running a Rust program, you must compile it using the Rust
compiler by entering the rustc command and passing it the name of

your source file, like this:

$ rustc main.rs

If you have a C or C++ background, you’ll notice that this is similar to
gcc or clang . After compiling successfully, Rust outputs a binary

executable.

On Linux, macOS, and PowerShell on Windows, you can see the

executable by entering the 1s command in your shell:

$ 1s
main malin.rs

On Linux and macOS, you’ll see two files. With PowerShell on
Windows, you’ll see the same three files that you would see using CMD.

With CMD on Windows, you would enter the following:

> dir /B %= the /B option says to only show the f
malin.exe
main.pdb
main.rs

This shows the source code file with the .rs extension, the executable file
(main.exe on Windows, but main on all other platforms), and, when using
Windows, a file containing debugging information with the .pdb extension.

From here, you run the main or main.exe file, like this:

$./main # or .\main.exe on Windows

If your main.rs is your “Hello, world!” program, this line prints Hello,

world! to your terminal.

If you’re more familiar with a dynamic language, such as Ruby, Python,
or JavaScript, you might not be used to compiling and running a program as
separate steps. Rust is an ahead-of-time compiled language, meaning you
can compile a program and give the executable to someone else, and they
can run it even without having Rust installed. If you give someone a .rb,
.py, or .js file, they need to have a Ruby, Python, or JavaScript
implementation installed (respectively). But in those languages, you only
need one command to compile and run your program. Everything is a trade-

off in language design.

Just compiling with rustc is fine for simple programs, but as your
project grows, you’ll want to manage all the options and make it easy to
share your code. Next, we’ll introduce you to the Cargo tool, which will

help you write real-world Rust programs.

Hello, Cargo!

Cargo is Rust’s build system and package manager. Most Rustaceans use
this tool to manage their Rust projects because Cargo handles a lot of tasks

for you, such as building your code, downloading the libraries your code

depends on, and building those libraries. (We call the libraries that your

code needs dependencies.)

The simplest Rust programs, like the one we’ve written so far, don’t have
any dependencies. If we had built the “Hello, world!” project with Cargo, it
would only use the part of Cargo that handles building your code. As you
write more complex Rust programs, you’ll add dependencies, and if you

start a project using Cargo, adding dependencies will be much easier to do.

Because the vast majority of Rust projects use Cargo, the rest of this
book assumes that you’re using Cargo too. Cargo comes installed with Rust
if you used the official installers discussed in “Installation” on page 1. If
you installed Rust through some other means, check whether Cargo is

installed by entering the following in your terminal:

$ cargo --version

If you see a version number, you have it! If you see an error, such as
command not found, look at the documentation for your method of

installation to determine how to install Cargo separately.
Creating a Project with Cargo

Let’s create a new project using Cargo and look at how it differs from our

original “Hello, world!” project. Navigate back to your projects directory

(or wherever you decided to store your code). Then, on any operating

system, run the following:

$ cargo new hello_cargo
$ cd hello_cargo

The first command creates a new directory and project called
hello_cargo. We’ve named our project hello_cargo, and Cargo creates its

files in a directory of the same name.

Go into the hello_cargo directory and list the files. You’ll see that Cargo
has generated two files and one directory for us: a Cargo.toml file and a src

directory with a main.rs file inside.

It has also initialized a new Git repository along with a .gitignore file. Git
files won’t be generated if you run cargo new within an existing Git
repository; you can override this behavior by using cargo new --

vcs=git.

Git is a common version control system. You can change cargo
new to use a different version control system or no version control
system by using the --vcs flag. Run cargo new --help to

see the available options.

Open Cargo.toml in your text editor of choice. It should look similar to

the code in Listing 1-2.

Cargo.toml
[package]
name = "hello_cargo"
version = "0.1.0"

edition = "2021"

See more keys and their definitions at https:/,

[dependencies]

Listing 1-2: Contents of Cargo.toml generated by cargo new

This file is in the TOML (Tom’ Obvious, Minimal Language) format,

which is Cargo’s configuration format.

The first line, [package], is a section heading that indicates that the
following statements are configuring a package. As we add more

information to this file, we’ll add other sections.

The next three lines set the configuration information Cargo needs to
compile your program: the name, the version, and the edition of Rust to use.

We’ll talk about the edition key in Appendix E.

The last line, [dependencies], is the start of a section for you to list
any of your project’s dependencies. In Rust, packages of code are referred
to as crates. We won’t need any other crates for this project, but we will in

the first project in Chapter 2, so we’ll use this dependencies section then.

Now open src/main.rs and take a look:

src/main.rs

fn main() {
println!("Hello, world!");

Cargo has generated a “Hello, world!” program for you, just like the one

we wrote in Listing 1-1! So far, the differences between our project and the

project Cargo generated are that Cargo placed the code in the src directory

and we have a Cargo.toml configuration file in the top directory.

Cargo expects your source files to live inside the src directory. The top-
level project directory is just for README files, license information,
configuration files, and anything else not related to your code. Using Cargo
helps you organize your projects. There’s a place for everything, and

everything is in its place.

If you started a project that doesn’t use Cargo, as we did with the “Hello,

»
!

world!” project, you can convert it to a project that does use Cargo. Move

the project code into the src directory and create an appropriate Cargo.toml

file.
Building and Running a Cargo Project

Now let’s look at what’s different when we build and run the “Hello,
world!” program with Cargo! From your hello_cargo directory, build your

project by entering the following command:

$ cargo build
Compiling hello_cargo v0.1.0 (file:///project:
Finished dev [unoptimized + debuginfo] target

4

This command creates an executable file in target/debug/hello_cargo (or
target\debug\hello_cargo.exe on Windows) rather than in your current
directory. Because the default build is a debug build, Cargo puts the binary

in a directory named debug. You can run the executable with this command:

$./target/debug/hello_cargo # or .\target\debug'
Hello, world!

If all goes well, Hello, world! should print to the terminal.
Running cargo build for the first time also causes Cargo to create a
new file at the top level: Cargo.lock. This file keeps track of the exact
versions of dependencies in your project. This project doesn’t have
dependencies, so the file is a bit sparse. You won’t ever need to change this

file manually; Cargo manages its contents for you.

We just built a project with cargo build and ran it with
./target/debug/hello_cargo, but we can also use cargo run
to compile the code and then run the resultant executable all in one

command:

$ cargo run
Finished dev [unoptimized + debuginfo] target
Running "target/debug/hello_cargo’

Hello, world!

Using cargo run is more convenient than having to remember to run
cargo build and then use the whole path to the binary, so most

developers use cargo run.

Notice that this time we didn’t see output indicating that Cargo was
compiling hello_cargo . Cargo figured out that the files hadn’t
changed, so it didn’t rebuild but just ran the binary. If you had modified
your source code, Cargo would have rebuilt the project before running it,

and you would have seen this output:

$ cargo run
Compiling hello_cargo v0.1.0 (file:///project:
Finished dev [unoptimized + debuginfo] targetf
Running "target/debug/hello_cargo”
Hello, world!

Cargo also provides a command called cargo check . This command
quickly checks your code to make sure it compiles but doesn’t produce an

executable:

$ cargo check
Checking hello_cargo v0.1.0 (file:///projects.
Finished dev [unoptimized + debuginfo] target

4

Why would you not want an executable? Often, cargo check is
much faster than cargo build because it skips the step of producing an
executable. If you’re continually checking your work while writing the
code, using cargo check will speed up the process of letting you know
if your project is still compiling! As such, many Rustaceans run cargo
check periodically as they write their program to make sure it compiles.

Then they run cargo build when they’re ready to use the executable.

Let’s recap what we’ve learned so far about Cargo:

e We can create a project using cargo new.

e We can build a project using cargo build.

e We can build and run a project in one step using cargo run.

e We can build a project without producing a binary to check for errors
using cargo check.

 Instead of saving the result of the build in the same directory as our

code, Cargo stores it in the target/debug directory.

An additional advantage of using Cargo is that the commands are the
same no matter which operating system you’re working on. So, at this
point, we’ll no longer provide specific instructions for Linux and macOS

versus Windows.

Building for Release

When your project is finally ready for release, you can use cargo build
- -release to compile it with optimizations. This command will create
an executable in target/release instead of target/debug. The optimizations
make your Rust code run faster, but turning them on lengthens the time it
takes for your program to compile. This is why there are two different
profiles: one for development, when you want to rebuild quickly and often,
and another for building the final program you’ll give to a user that won’t
be rebuilt repeatedly and that will run as fast as possible. If you’re
benchmarking your code’s running time, be sure to run cargo build -

-release and benchmark with the executable in target/release.
Cargo as Convention

With simple projects, Cargo doesn’t provide a lot of value over just using
rustc, but it will prove its worth as your programs become more
intricate. Once programs grow to multiple files or need a dependency, it’s

much easier to let Cargo coordinate the build.

Even though the hello_cargo project is simple, it now uses much of
the real tooling you’ll use in the rest of your Rust career. In fact, to work on
any existing projects, you can use the following commands to check out the

code using Git, change to that project’s directory, and build:

$ git clone example.org/someproject
$ cd someproject
$ cargo build

For more information about Cargo, check out its documentation at http

s://doc.rust-lang.org/cargo.

Summary

You're already off to a great start on your Rust journey! In this chapter,

you’ve learned how to:

Install the latest stable version of Rust using rustup

Update to a newer Rust version

Open locally installed documentation

Write and run a “Hello, world!” program using rustc directly

Create and run a new project using the conventions of Cargo

This is a great time to build a more substantial program to get used to
reading and writing Rust code. So, in Chapter 2, we’ll build a guessing
game program. If you would rather start by learning how common
programming concepts work in Rust, see Chapter 3 and then return to

Chapter 2.

https://doc.rust-lang.org/cargo

OceanofPDF.com

https://oceanofpdf.com/

2
PROGRAMMING A GUESSING
GAME

Let’s jump into Rust by working through a hands-on project

together! This chapter introduces you to a few common Rust
concepts by showing you how to use them in a real program.
7 You’ll learn about 1let, match , methods, associated
functions, external crates, and more! In the following
chapters, we’ll explore these ideas in more detail. In this

chapter, you’ll just practice the fundamentals.

We’ll implement a classic beginner programming problem: a guessing
game. Here’s how it works: the program will generate a random integer
between 1 and 100. It will then prompt the player to enter a guess. After a
guess is entered, the program will indicate whether the guess is too low or
too high. If the guess is correct, the game will print a congratulatory

message and exit.

Setting Up a New Project

To set up a new project, go to the projects directory that you created in

Chapter 1 and make a new project using Cargo, like so:

$ cargo new guessing_game
$ cd guessing_game

The first command, cargo new, takes the name of the project

(guessing_game) as the first argument. The second command changes

to the new project’s directory.

Look at the generated Cargo.toml file:

Cargo.toml
[package]
name = ''guessing_game"
version = "0.1.0"

edition = "2021"

See more keys and their definitions at https:/.
/reference/manifest.html

[dependencies]

As you saw in Chapter 1, cargo new generates a “Hello, world!”

program for you. Check out the src/main.rs file:

src/main.rs

fn main() {
println!("Hello, world!");

Now let’s compile this “Hello, world!” program and run it in the same

step using the cargo run command:

$ cargo run
Compiling guessing_game v0.1.0 (file:///projec
Finished dev [unoptimized + debuginfo] targetf
Running "target/debug/guessing_game"
Hello, world!

The run command comes in handy when you need to rapidly iterate on
a project, as we’ll do in this game, quickly testing each iteration before

moving on to the next one.

Reopen the src/main.rs file. You’ll be writing all the code in this file.

Processing a Guess

The first part of the guessing game program will ask for user input, process
that input, and check that the input is in the expected form. To start, we’ll
allow the player to input a guess. Enter the code in Listing 2-1 into

src/main.rs.

src/main.rs

use std::io;

fn main() {
println! ("Guess the number!");

println!("Please input your guess.");
let mut guess = String::new();
10::stdin()

.read_line(&mut guess)

.expect("Failed to read line");

println!("You guessed: {guess}");

Listing 2-1: Code that gets a guess from the user and prints it

This code contains a lot of information, so let’s go over it line by line. To
obtain user input and then print the result as output, we need to bring the
10 input/output library into scope. The 10 library comes from the

standard library, known as std :

use std::io;

By default, Rust has a set of items defined in the standard library that it
brings into the scope of every program. This set is called the prelude, and

you can see everything in it at https://doc.rust-lang.org/std/prelude/index.ht

ml.

If a type you want to use isn’t in the prelude, you have to bring that type
into scope explicitly with a use statement. Using the std: :io library
provides you with a number of useful features, including the ability to

accept user input.

As you saw in Chapter 1, the main function is the entry point into the

program:

fn main() {

The fn syntax declares a new function; the parentheses, () , indicate
there are no parameters; and the curly bracket, {, starts the body of the

function.

As you also learned in Chapter 1, println! isa macro that prints a

string to the screen:

println! ("Guess the number!");

https://doc.rust-lang.org/std/prelude/index.html

println!("Please input your guess.");

This code is printing a prompt stating what the game is and requesting

input from the user.
Storing Values with Variables

Next, we’ll create a variable to store the user input, like this:

let mut guess = String::new();

Now the program is getting interesting! There’s a lot going on in this
little line. We use the let statement to create the variable. Here’s another

example:

let apples = 5;

This line creates a new variable named apples and binds it to the
value 5. In Rust, variables are immutable by default, meaning once we
give the variable a value, the value won’t change. We’ll be discussing this
concept in detail in “Variables and Mutability” on page 32. To make a

variable mutable, we add mut before the variable name:

let apples = 5; // immutable
let mut bananas = 5; // mutable

NOTE

The // syntax starts a comment that continues until the end of the
line. Rust ignores everything in comments. We’ll discuss comments

in more detail in Chapter 3.

Returning to the guessing game program, you now know that let mut
guess will introduce a mutable variable named guess . The equal sign
(=) tells Rust we want to bind something to the variable now. On the right
of the equal sign is the value that guess is bound to, which is the result of
calling String: :new, a function that returns a new instance of a

String. String is a string type provided by the standard library that
is a growable, UTF-8 encoded bit of text.

The :: syntaxinthe ::new line indicates that new is an associated
function of the String type. An associated function is a function that’s

implemented on a type, in this case String . This new function creates

a new, empty string. You’ll find a new function on many types because it’s

a common name for a function that makes a new value of some kind.

In full, the 1et mut guess = String::new(); line has created
a mutable variable that is currently bound to a new, empty instance of a

String . Whew!
Receiving User Input

Recall that we included the input/output functionality from the standard
library with use std::10; on the first line of the program. Now we’ll
call the stdin function from the 10 module, which will allow us to

handle user input:

10::stdin()
.read_line(&mut guess)

If we hadn’t imported the 10 library with use std::io; atthe
beginning of the program, we could still use the function by writing this
function call as std: :io::stdin.The stdin function returns an
instance of std: :10::Stdin, which is a type that represents a handle

to the standard input for your terminal.

Next, the line .read_line(&mut guess) callsthe read_line

method on the standard input handle to get input from the user. We’re also

passing &mut guess as the argumentto read_line to tell it what
string to store the user input in. The full job of read_line is to take
whatever the user types into standard input and append that into a string
(without overwriting its contents), so we therefore pass that string as an
argument. The string argument needs to be mutable so the method can

change the string’s content.

The & indicates that this argument is a reference, which gives you a way
to let multiple parts of your code access one piece of data without needing
to copy that data into memory multiple times. References are a complex
feature, and one of Rust’s major advantages is how safe and easy it is to use
references. You don’t need to know a lot of those details to finish this
program. For now, all you need to know is that, like variables, references
are immutable by default. Hence, you need to write &mut guess rather
than &guess to make it mutable. (Chapter 4 will explain references more

thoroughly.)
Handling Potential Failure with Result

We’re still working on this line of code. We’re now discussing a third line
of text, but note that it’s still part of a single logical line of code. The next

part is this method:

.expect("Failed to read line");

We could have written this code as:

10::stdin().read_line(&mut guess).expect("Failed

4

However, one long line is difficult to read, so it’s best to divide it. It’s
often wise to introduce a newline and other whitespace to help break up
long lines when you call a method with the .method_name() syntax.

Now let’s discuss what this line does.

As mentioned earlier, read_line puts whatever the user enters into
the string we pass to it, but it also returns a Result value. Result is
an enumeration, often called an enum, which is a type that can be in one of

multiple possible states. We call each possible state a variant.

Chapter 6 will cover enums in more detail. The purpose of these

Result types is to encode error-handling information.

Result ’s variants are Ok and Err . The Ok variant indicates the
operation was successful, and inside Ok is the successfully generated
value. The Err variant means the operation failed, and Err contains

information about how or why the operation failed.

Values of the Result type, like values of any type, have methods
defined on them. An instance of Result hasan expect method that

you can call. If this instance of Result isan Err value, expect will

cause the program to crash and display the message that you passed as an
argument to expect . If the read_line method returns an Err , it
would likely be the result of an error coming from the underlying operating
system. If this instance of Result isan Ok value, expect will take
the return value that Ok is holding and return just that value to you so you

can use it. In this case, that value is the number of bytes in the user’s input.

If you don’t call expect , the program will compile, but you’ll get a

warning:

$ cargo build

Compiling guessing_game v0.1.0 (file:///proje«
warning: unused "Result” that must be used

--> src/main.rs:10:5

|

| i0::stdin().read_line(&mut guess);
| NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
|

note: “#[warn(unused_must_use)] on by defal
note: this "Result” may be an "Err variant,

warning: “guessing_game (bin "guessing_game") g¢
Finished dev [unoptimized + debuginfo] target

4

Rust warns that you haven’t used the Result value returned from

read_line, indicating that the program hasn’t handled a possible error.

The right way to suppress the warning is to actually write error-handling
code, but in our case we just want to crash this program when a problem
occurs, so we can use expect . You'll learn about recovering from errors

in Chapter 9.
Printing Values with println! Placeholders

Aside from the closing curly bracket, there’s only one more line to discuss

in the code so far:

println!("You guessed: {guess}");

This line prints the string that now contains the user’s input. The {} set
of curly brackets is a placeholder: think of {} as little crab pincers that
hold a value in place. When printing the value of a variable, the variable
name can go inside the curly brackets. When printing the result of
evaluating an expression, place empty curly brackets in the format string,
then follow the format string with a comma-separated list of expressions to
print in each empty curly bracket placeholder in the same order. Printing a
variable and the result of an expression in one call to println! would

look like this:

let x = 5;
let y = 10;

println!("x = {x} and y + 2 = {}", vy + 2);

This code would print x = 5 and y = 12.
Testing the First Part

Let’s test the first part of the guessing game. Run it using cargo run:

$ cargo run
Compiling guessing_game v0.1.0 (file:///proje«

Finished dev [unoptimized + debuginfo] target
Running "target/debug/guessing_game"

Guess the number!

Please input your guess.

6

You guessed: 6

At this point, the first part of the game is done: we’re getting input from

the keyboard and then printing it.

Generating a Secret Number

Next, we need to generate a secret number that the user will try to guess.

The secret number should be different every time so the game is fun to play

more than once. We’ll use a random number between 1 and 100 so the game
isn’t too difficult. Rust doesn’t yet include random number functionality in
its standard library. However, the Rust team does provide a rand crate at

https://crates.io/crates/rand with said functionality.

Using a Crate to Get More Functionality

Remember that a crate is a collection of Rust source code files. The project
we’ve been building is a binary crate, which is an executable. The rand
crate is a library crate, which contains code that is intended to be used in

other programs and can’t be executed on its own.

Cargo’s coordination of external crates is where Cargo really shines.
Before we can write code that uses rand , we need to modify the
Cargo.toml file to include the rand crate as a dependency. Open that file
now and add the following line to the bottom, beneath the

[dependencies] section header that Cargo created for you. Be sure to
specify rand exactly as we have here, with this version number, or the

code examples in this tutorial may not work:

Cargo.toml

[dependencies]
rand = "0.8.5"

https://crates.io/crates/rand

In the Cargo.toml file, everything that follows a header is part of that
section that continues until another section starts. In [dependencies]
you tell Cargo which external crates your project depends on and which
versions of those crates you require. In this case, we specify the rand
crate with the semantic version specifier 0.8.5 . Cargo understands
Semantic Versioning (sometimes called SemVer), which is a standard for
writing version numbers. The specifier 0.8.5 is actually shorthand for

N@.8.5, which means any version that is at least 0.8.5 but below 0.9.0.

Cargo considers these versions to have public APIs compatible with
version 0.8.5, and this specification ensures you’ll get the latest patch
release that will still compile with the code in this chapter. Any version
0.9.0 or greater is not guaranteed to have the same API as what the

following examples use.

Now, without changing any of the code, let’s build the project, as shown

in Listing 2-2.

$ cargo build

Updating crates.io index
Downloaded rand v0.8.5
Downloaded libc v0.2.127
Downloaded getrandom v0.2.7
Downloaded cfg-if v1.0.0
Downloaded ppv-1ite86 v0.2.16
Downloaded rand_chacha v0.3.1

Downloaded rand_core v0.6.3

Compiling rand_core v0.6.3

Compiling libc v0.2.127

Compiling getrandom v0.2.7

Compiling cfg-if v1.0.0

Compiling ppv-1lite86 v0.2.16

Compiling rand_chacha v0.3.1

Compiling rand v0.8.5

Compiling guessing_game v0.1.0 (file:///proje«
Finished dev [unoptimized + debuginfo] target

Listing 2-2: The output from running cargo build dafter adding the

rand crate as a dependency

You may see different version numbers (but they will all be compatible
with the code, thanks to SemVer!) and different lines (depending on the

operating system), and the lines may be in a different order.

When we include an external dependency, Cargo fetches the latest X

versions of everything that dependency needs from the registry, which is a

copy of data from Crates.io at https://crates.io. Crates.io is where people in

the Rust ecosystem post their open source Rust projects for others to use.

After updating the registry, Cargo checks the [dependencies]
section and downloads any crates listed that aren’t already downloaded. In

this case, although we only listed rand as a dependency, Cargo also

https://crates.io/

grabbed other crates that rand depends on to work. After downloading
the crates, Rust compiles them and then compiles the project with the

dependencies available.

If you immediately run cargo build again without making any
changes, you won’t get any output aside from the Finished line. Cargo
knows it has already downloaded and compiled the dependencies, and you
haven’t changed anything about them in your Cargo.toml file. Cargo also
knows that you haven’t changed anything about your code, so it doesn’t

recompile that either. With nothing to do, it simply exits.

If you open the src/main.rs file, make a trivial change, and then save it

and build again, you’ll only see two lines of output:

$ cargo build
Compiling guessing_game v0.1.0 (file:///proje
Finished dev [unoptimized + debuginfo] target

»

These lines show that Cargo only updates the build with your tiny change
to the src/main.rs file. Your dependencies haven’t changed, so Cargo knows

it can reuse what it has already downloaded and compiled for those.

Ensuring Reproducible Builds with the Cargo.lock File

Cargo has a mechanism that ensures you can rebuild the same artifact every
time you or anyone else builds your code: Cargo will use only the versions
of the dependencies you specified until you indicate otherwise. For
example, say that next week version 0.8.6 of the rand crate comes out,
and that version contains an important bug fix, but it also contains a
regression that will break your code. To handle this, Rust creates the
Cargo.lock file the first time yourun cargo build, so we now have

this in the guessing_game directory.

When you build a project for the first time, Cargo figures out all the
versions of the dependencies that fit the criteria and then writes them to the
Cargo.lock file. When you build your project in the future, Cargo will see
that the Cargo.lock file exists and will use the versions specified there
rather than doing all the work of figuring out versions again. This lets you
have a reproducible build automatically. In other words, your project will
remain at 0.8.5 until you explicitly upgrade, thanks to the Cargo.lock file.
Because the Cargo.lock file is important for reproducible builds, it’s often

checked into source control with the rest of the code in your project.
Updating a Crate to Get a New Version

When you do want to update a crate, Cargo provides the command
update , which will ignore the Cargo.lock file and figure out all the latest

versions that fit your specifications in Cargo.toml. Cargo will then write

those versions to the Cargo.lock file. Otherwise, by default, Cargo will only
look for versions greater than 0.8.5 and less than 0.9.0. If the rand crate
has released the two new versions 0.8.6 and 0.9.0, you would see the

following if youran cargo update:

$ cargo update
Updating crates.io index
Updating rand v0.8.5 -> v0.8.6

Cargo ignores the 0.9.0 release. At this point, you would also notice a
change in your Cargo.lock file noting that the version of the rand crate
you are now using is 0.8.6. To use rand version 0.9.0 or any version in
the 0.9.x series, you’d have to update the Cargo.toml file to look like this

instead:

[dependencies]
rand = "0.9.0"

The next time yourun cargo build, Cargo will update the registry
of crates available and reevaluate your rand requirements according to

the new version you have specified.

There’s a lot more to say about Cargo and its ecosystem, which we’ll

discuss in Chapter 14, but for now, that’s all you need to know. Cargo

makes it very easy to reuse libraries, so Rustaceans are able to write smaller

projects that are assembled from a number of packages.
Generating a Random Number

Let’s start using rand to generate a number to guess. The next step is to

update src¢/main.rs, as shown in Listing 2-3.

src/main.rs

use std::io;
® use rand::Rng;

fn main() {
println! ("Guess the number!");

® let secret_number = rand::thread_rng().gen_r
© println!("The secret number is: {secret_numbs
println!("Please input your guess.");
let mut guess = String::new();
10::stdin()

.read_line(&mut guess)
.expect("Failed to read line");

println!("You guessed: {guess}");

Listing 2-3: Adding code to generate a random number

First we add the line use rand::Rng; ©.The Rng trait defines
methods that random number generators implement, and this trait must be

in scope for us to use those methods. Chapter 10 will cover traits in detail.

Next, we’re adding two lines in the middle. In the first line @, we call the

rand: :thread_rng function that gives us the particular random
number generator we’re going to use: one that is local to the current thread
of execution and is seeded by the operating system. Then we call the
gen_range method on the random number generator. This method is
defined by the Rng trait that we brought into scope with the use

rand: :Rng; statement. The gen_range method takes a range
expression as an argument and generates a random number in the range.
The kind of range expression we’re using here takes the form
start..=end .and is inclusive on the lower and upper bounds, so we

4

need to specify 1..=100 to request a number between 1 and 100.

You won't just know which traits to use and which methods and
functions to call from a crate, so each crate has documentation with
instructions for using it. Another neat feature of Cargo is that
running the cargo doc --open command will build
documentation provided by all your dependencies locally and open
it in your browser. If you’re interested in other functionality in the
rand crate, for example, run cargo doc --open and click

rand in the sidebar on the left.

The second new line © prints the secret number. This is useful while
we’re developing the program to be able to test it, but we’ll delete it from
the final version. It’s not much of a game if the program prints the answer

as soon as it starts!

Try running the program a few times:

$ cargo run
Compiling guessing_game v0.1.0 (file:///proje«
Finished dev [unoptimized + debuginfo] target
Running "target/debug/guessing_game"
Guess the number!

The secret number is: 7
Please input your guess.
4

You guessed: 4

$ cargo run
Finished dev [unoptimized + debuginfo] target
Running "target/debug/guessing_game"

Guess the number!

The secret number is: 83

Please input your guess.

5

You guessed: 5

You should get different random numbers, and they should all be

numbers between 1 and 100. Great job!

Comparing the Guess to the Secret Number

»

Now that we have user input and a random number, we can compare them.
That step is shown in Listing 2-4. Note that this code won’t compile just

yet, as we will explain.

src/main.rs

use rand: :Rng;
® use std::cmp::0rdering;
use std::io;

fn main() {
--snip- -

println!("You guessed: {guess}'");

® match guess.®©cmp(&secret_number) {
Ordering::Less => println!("Too small!"),

Ordering::Greater => println!("Too big!"
Ordering::Equal => println!("You win!"),

Listing 2-4: Handling the possible return values of comparing two numbers

First we add another use statement @, bringing a type called
std::cmp::0rdering into scope from the standard library. The
Ordering type is another enum and has the variants Less,

Greater,and Equal . These are the three outcomes that are possible

when you compare two values.

Then we add five new lines at the bottom that use the Ordering type.

The cmp method ©® compares two values and can be called on anything

that can be compared. It takes a reference to whatever you want to compare
with: here it’s comparing guess to secret_number . Then it returns a
variant of the Ordering enum we brought into scope with the use
statement. We use a match expression @ to decide what to do next based
on which variant of Ordering was returned from the call to cmp with

the values in guess and secret_number .

A match expression is made up of arms. An arm consists of a pattern
to match against, and the code that should be run if the value given to
match fits that arm’s pattern. Rust takes the value given to match and
looks through each arm’s pattern in turn. Patterns and the match
construct are powerful Rust features: they let you express a variety of
situations your code might encounter and they make sure you handle them
all. These features will be covered in detail in Chapter 6 and Chapter 18,

respectively.

Let’s walk through an example with the match expression we use here.
Say that the user has guessed 50 and the randomly generated secret number

this time is 38.

When the code compares 50 to 38, the cmp method will return
Ordering: :Greater because 50 is greater than 38. The match
expression gets the Ordering: :Greater value and starts checking
each arm’s pattern. It looks at the first arm’s pattern, Ordering: :Less,

and sees that the value Ordering: :Greater does not match

Ordering: :Less, so it ignores the code in that arm and moves to the
next arm. The next arm’s pattern is Ordering: :Greater , which does
match Ordering: :Greater ! The associated code in that arm will
execute and print Too big! to the screen. The match expression ends
after the first successful match, so it won’t look at the last arm in this

scenario.

However, the code in Listing 2-4 won’t compile yet. Let’s try it:

$ cargo build

Compiling guessing_game v0.1.0 (file:///projec
error[EO308]: mismatched types

--> src/main.rs:22:21

|
| match guess.cmp(&secret_number) {

| NNANAANAANAAAN expected
|

note: expected reference &String’
found reference "&{integer}"

The core of the error states that there are mismatched types. Rust has a
strong, static type system. However, it also has type inference. When we
wrote let mut guess = String: :new(), Rust was able to infer
that guess should bea String and didn’t make us write the type. The

secret_number , on the other hand, is a number type. A few of Rust’s

number types can have a value between 1 and 100: 132, a 32-bit number;
u32, an unsigned 32-bit number; 164 , a 64-bit number; as well as
others. Unless otherwise specified, Rust defaults to an 132, which is the
type of secret_number unless you add type information elsewhere that
would cause Rust to infer a different numerical type. The reason for the

error is that Rust cannot compare a string and a number type.

Ultimately, we want to convert the String the program reads as input
into a real number type so we can compare it numerically to the secret

number. We do so by adding this line to the main function body:

src/main.rs

--Snip- -

let mut guess = String::new();

10::stdin()
.read_line(&mut guess)
.expect("Failed to read line");

let guess: u32 = guess
Ltrim()
.parse()
.expect("Please type a number!");

println!("You guessed: {guess}");

match guess.cmp(&secret_number) {
Ordering::Less => println!("Too small!"),
Ordering: :Greater => println!("Too big!'"),
Ordering::Equal => println!("You win!"),

We create a variable named guess . But wait, doesn’t the program
already have a variable named guess ? It does, but helpfully Rust allows
us to shadow the previous value of guess with a new one. Shadowing
lets us reuse the guess variable name rather than forcing us to create two
unique variables, such as guess_str and guess, for example. We’ll
cover this in more detail in Chapter 3, but for now, know that this feature is

often used when you want to convert a value from one type to another type.

We bind this new variable to the expression
guess.trim().parse() .The guess in the expression refers to the
original guess variable that contained the input as a string. The trim
method ona String instance will eliminate any whitespace at the
beginning and end, which we must do to be able to compare the string to }
the u32, which can only contain numerical data. The user must press
ENTER to satisfy read_line and input their guess, which adds a

newline character to the string. For example, if the user types 5 and

presses ENTER, guess looks like this: 5\n . The \n represents

“newline.” (On Windows, pressing ENTER results in a carriage return and a
newline, \r\n.) The trim method eliminates \n or \r\n, resulting

injust 5.

The parse method on strings converts a string to another type. Here,
we use it to convert from a string to a number. We need to tell Rust the
exact number type we want by using let guess: u32.Thecolon(:)
after guess tells Rust we’ll annotate the variable’s type. Rust has a few
built-in number types; the u32 seen here is an unsigned, 32-bit integer. It’s
a good default choice for a small positive number. You’ll learn about other

number types in Chapter 3.

Additionally, the u32 annotation in this example program and the
comparison with secret_number means Rust will infer that
secret_number should bea u32 as well. So now the comparison will

be between two values of the same type!

The parse method will only work on characters that can logically be
converted into numbers and so can easily cause errors. If, for example, the
string contained A %, there would be no way to convert that to a number.
Because it might fail, the parse method returns a Result type, much
as the read_line method does (discussed earlier in “Handling Potential
Failure with Result” on page 17). We’ll treat this Result the same way
by using the expect method again. If parse returnsan Err

Result variant because it couldn’t create a number from the string, the

expect call will crash the game and print the message we give it. If
parse can successfully convert the string to a number, it will return the
Ok variant of Result, and expect will return the number that we

want from the Ok wvalue.

Let’s run the program now:

$ cargo run
Compiling guessing_game v0.1.0 (file:///projec
Finished dev [unoptimized + debuginfo] target
Running "target/debug/guessing_game"
Guess the number!
The secret number is: 58
Please input your guess.
76
You guessed: 76
Too big!

Nice! Even though spaces were added before the guess, the program still
figured out that the user guessed 76. Run the program a few times to verify
the different behavior with different kinds of input: guess the number
correctly, guess a number that is too high, and guess a number that is too

low.

We have most of the game working now, but the user can make only one

guess. Let’s change that by adding a loop!

Allowing Multiple Guesses with Looping

The loop keyword creates an infinite loop. We’ll add a loop to give users

more chances at guessing the number.

src/main.rs

--snip- -
println! ("The secret number is: {secret_number}"

loop {
println!("Please input your guess.");

--snip- -

match guess.cmp(&secret_number) {
Ordering::Less => println!("Too small!"),
Ordering::Greater => println!("Too big!"
Ordering::Equal => println!("You win!"),

As you can see, we’ve moved everything from the guess input prompt
onward into a loop. Be sure to indent the lines inside the loop another four

spaces each and run the program again. The program will now ask for

another guess forever, which actually introduces a new problem. It doesn’t

seem like the user can quit!

The user could always interrupt the program by using the keyboard
shortcut CTRL-C. But there’s another way to escape this insatiable monster,
as mentioned in the parse discussion in “Comparing the Guess to the
Secret Number” on page 23: if the user enters a non-number answer, the
program will crash. We can take advantage of that to allow the user to quit,

as shown here:

$ cargo run
Compiling guessing_game v0.1.0 (file:///proje«

Finished dev [unoptimized + debuginfo] target
Running "target/debug/guessing_game"

Guess the number!

The secret number 1is: 59

Please input your guess.

45

You guessed: 45

Too small!

Please input your guess.

60

You guessed: 60

Too big!

Please input your guess.

59

You guessed: 59

You win!

Please input your guess.

quit

thread 'main' panicked at 'Please type a number!
{ kind: InvalidDigit }', src/main.rs:28:47

note: run with "RUST_BACKTRACE=1" environment val

Typing quit will quit the game, but as you’ll notice, so will entering
any other non-number input. This is suboptimal, to say the least; we want

the game to also stop when the correct number is guessed.
Quitting After a Correct Guess

Let’s program the game to quit when the user wins by adding a break

statement:

src/main.rs

--snip- -

match guess.cmp(&secret_number) {
Ordering::Less => println!("Too small!"),
Ordering::Greater => println!("Too big!"),
Ordering: :Equal => {
println!("You win!");
break;

Adding the break line after You win! makes the program exit the
loop when the user guesses the secret number correctly. Exiting the loop

also means exiting the program, because the loop is the last part of main .
Handling Invalid Input

To further refine the game’s behavior, rather than crashing the program
when the user inputs a non-number, let’s make the game ignore a non-
number so the user can continue guessing. We can do that by altering the }
line where guess is converted froma String toa u32, as shown in

Listing 2-5.

src¢/main.rs

--sSnip- -

10::stdin()
.read_line(&mut guess)
.expect("Failed to read line");

let guess: u32 = match guess.trim().parse() {
Ok(num) => num,
Err(_) => continue,

3
println!("You guessed: {guess}");

--sSnip- -

Listing 2-5: Ignoring a non-number guess and asking for another guess

instead of crashing the program

We switch from an expect calltoa match expression to move from
crashing on an error to handling the error. Remember that parse returns a
Result type and Result isan enum that has the variants Ok and
Err . We’re using a match expression here, as we did with the

Ordering result of the cmp method.

If parse is able to successfully turn the string into a number, it will
return an Ok value that contains the resultant number. That Ok value will
match the first arm’s pattern, and the match expression will just return
the num value that parse produced and put inside the Ok value. That
number will end up right where we want it in the new guess variable

we’re creating.

If parse is not able to turn the string into a number, it will return an
Err value that contains more information about the error. The Err value

does not match the Ok (num) pattern in the first match arm, but it does

match the Err(_) pattern in the second arm. The underscore, _,is a
catch-all value; in this example, we’re saying we want to match all Err
values, no matter what information they have inside them. So the program
will execute the second arm’s code, continue , which tells the program
to go to the next iteration of the 1oop and ask for another guess. So,

effectively, the program ignores all errors that parse might encounter!

Now everything in the program should work as expected. Let’s try it:

$ cargo run
Compiling guessing_game v0.1.0 (file:///projec

Finished dev [unoptimized + debuginfo] target
Running "target/debug/guessing_game"

Guess the number!

The secret number is: 61

Please input your guess.

10

You guessed: 10

Too small!

Please input your guess.

99

You guessed: 99

Too big!

Please input your guess.
foo

Please input your guess.
61

You guessed: 61
You win!

Awesome! With one tiny final tweak, we will finish the guessing game.
Recall that the program is still printing the secret number. That worked well
for testing, but it ruins the game. Let’s delete the println! that outputs

the secret number. Listing 2-6 shows the final code.

src/main.rs

use rand::Rng;
use std::cmp::0rdering;
use std::io0;

fn main() {
println!("Guess the number!");

let secret_number = rand::thread_rng().gen_r:

loop {
println!("Please input your guess.");

let mut guess = String::new();

10::stdin()
.read_line(&mut guess)

.expect("Failed to read line");

let guess: u32 = match guess.trim().parst
Ok(num) => num,
Err(_) => continue,

3
println!("You guessed: {guess}");

match guess.cmp(&secret_number) {
Ordering::Less => println!("Too smal.
Ordering::Greater => println!("Too b:
Ordering: :Equal => {
println!("You win!");
break;

Listing 2-6: Complete guessing game code

At this point, you’ve successfully built the guessing game.

Congratulations!

Summary

This project was a hands-on way to introduce you to many new Rust
concepts: let, match, functions, the use of external crates, and more.
In the next few chapters, you’ll learn about these concepts in more detail.
Chapter 3 covers concepts that most programming languages have, such as
variables, data types, and functions, and shows how to use them in Rust.
Chapter 4 explores ownership, a feature that makes Rust different from
other languages. Chapter 5 discusses structs and method syntax, and

Chapter 6 explains how enums work.

OceanofPDF.com

4

https://oceanofpdf.com/

3
COMMON PROGRAMMING
CONCEPTS

This chapter covers concepts that appear in almost every

programming language and how they work in Rust. Many
programming languages have much in common at their core.
7 None of the concepts presented in this chapter are unique to
Rust, but we’ll discuss them in the context of Rust and

explain the conventions around using these concepts.

Specifically, you’ll learn about variables, basic types, functions,
comments, and control flow. These foundations will be in every Rust

program, and learning them early will give you a strong core to start from.

KEYWORDS

The Rust language has a set of keywords that are reserved for use by the language only, much as
in other languages. Keep in mind that you cannot use these words as names of variables or
functions. Most of the keywords have special meanings, and you’ll be using them to do various
tasks in your Rust programs; a few have no current functionality associated with them but have
been reserved for functionality that might be added to Rust in the future. You can find a list of

the keywords in Appendix A.

Variables and Mutability

As mentioned in “Storing Values with Variables” on page 16, by default,
variables are immutable. This is one of many nudges Rust gives you to
write your code in a way that takes advantage of the safety and easy
concurrency that Rust offers. However, you still have the option to make
your variables mutable. Let’s explore how and why Rust encourages you to

favor immutability and why sometimes you might want to opt out.

When a variable is immutable, once a value is bound to a name, you can’t
change that value. To illustrate this, generate a new project called variables

in your projects directory by using cargo new variables.

Then, in your new variables directory, open src/main.rs and replace its

code with the following code, which won’t compile just yet:

src/main.rs

fn main() {
let x = 5;
println!("The value of x is: {x}");
X = 6;
println!("The value of x is: {x}");

Save and run the program using cargo run . You should receive an

error message regarding an immutability error, as shown in this output:

$ cargo run

Compiling variables v0.1.0 (file:///projects/»

error[EO384]: cannot assign twice to immutable v:
--> src/main.rs:4:5

let x = 5;

first assignment to "x°
help: consider making this binding mi
println!("The value of x is: {x}");
X = 6,
ANNAN cannot assign twice to immutable v

>

This example shows how the compiler helps you find errors in your

programs. Compiler errors can be frustrating, but really they only mean

your program isn’t safely doing what you want it to do yet; they do not

mean that you’re not a good programmer! Experienced Rustaceans still get

compiler errors.

You received the error message cannot assign twice to

immutable variable “x° because you tried to assign a second

value to the immutable X variable.

It’s important that we get compile-time errors when we attempt to change
a value that’s designated as immutable because this very situation can lead
to bugs. If one part of our code operates on the assumption that a value will
never change and another part of our code changes that value, it’s possible
that the first part of the code won’t do what it was designed to do. The
cause of this kind of bug can be difficult to track down after the fact,
especially when the second piece of code changes the value only
sometimes. The Rust compiler guarantees that when you state that a value
won’t change, it really won’t change, so you don’t have to keep track of it

yourself. Your code is thus easier to reason through.

But mutability can be very useful, and can make code more convenient to
write. Although variables are immutable by default, you can make them
mutable by adding mut in front of the variable name as you did in Chapter
2. Adding mut also conveys intent to future readers of the code by

indicating that other parts of the code will be changing this variable’s value.

For example, let’s change src/main.rs to the following:

src/main.rs

fn main() {
let mut x = 5;
println!("The value of x is: {x}");
X = 6;

println!("The value of x is: {x}");

When we run the program now, we get this:

$ cargo run
Compiling variables v0.1.0 (file:///projects/»
Finished dev [unoptimized + debuginfo] targetf
Running "target/debug/variables"
The value of x is: 5
The value of x is: 6

We’re allowed to change the value bound to X from 5 to 6 when
mut is used. Ultimately, deciding whether to use mutability or not is up to

you and depends on what you think is clearest in that particular situation.
Constants

Like immutable variables, constants are values that are bound to a name
and are not allowed to change, but there are a few differences between

constants and variables.

First, you aren’t allowed to use mut with constants. Constants aren’t
just immutable by default—they’re always immutable. You declare

constants using the const keyword instead of the let keyword, and the

type of the value must be annotated. We’ll cover types and type annotations
in “Data Types” on page 36, so don’t worry about the details right now. Just

know that you must always annotate the type.

Constants can be declared in any scope, including the global scope,
which makes them useful for values that many parts of code need to know

about.

The last difference is that constants may be set only to a constant

expression, not the result of a value that could only be computed at runtime.

Here’s an example of a constant declaration:

const THREE_HOURS_IN_SECONDS: u32 = 60 * 60 * 3;

4

The constant’s name is THREE_HOURS_IN_SECONDS and its value is
set to the result of multiplying 60 (the number of seconds in a minute) by 60
(the number of minutes in an hour) by 3 (the number of hours we want to
count in this program). Rust’s naming convention for constants is to use all
uppercase with underscores between words. The compiler is able to
evaluate a limited set of operations at compile time, which lets us choose to
write out this value in a way that’s easier to understand and verify, rather
than setting this constant to the value 10, 800 . See the Rust Reference’s

section on constant evaluation at https://doc.rust-lang.org/reference/const e

https://doc.rust-lang.org/reference/const_eval.html

val.html for more information on what operations can be used when

declaring constants.

Constants are valid for the entire time a program runs, within the scope in
which they were declared. This property makes constants useful for values
in your application domain that multiple parts of the program might need to
know about, such as the maximum number of points any player of a game is

allowed to earn, or the speed of light.

Naming hardcoded values used throughout your program as constants is
useful in conveying the meaning of that value to future maintainers of the
code. It also helps to have only one place in your code you would need to

change if the hardcoded value needed to be updated in the future.
Shadowing

As you saw in the guessing game tutorial in Chapter 2, you can declare a
new variable with the same name as a previous variable. Rustaceans say
that the first variable is shadowed by the second, which means that the
second variable is what the compiler will see when you use the name of the
variable. In effect, the second variable overshadows the first, taking any
uses of the variable name to itself until either it itself is shadowed or the
scope ends. We can shadow a variable by using the same variable’s name

and repeating the use of the let keyword as follows:

https://doc.rust-lang.org/reference/const_eval.html

src/main.rs

fn main() {
let x = 5;

let x = x + 1;

let x = x * 2;
println!("The value of x in the inner sc¢

println!("The value of x is: {x}");

This program first binds X to a value of 5. Then it creates a new
variable X by repeating let X =, taking the original value and adding
1 so the value of X isthen 6 . Then, within an inner scope created with
the curly brackets, the third 1et statement also shadows X and creates a
new variable, multiplying the previous value by 2 to give X a value of
12 . When that scope is over, the inner shadowing ends and X returns to

being 6 . When we run this program, it will output the following:

$ cargo run
Compiling variables v0.1.0 (file:///projects/»

Finished dev [unoptimized + debuginfo] target
Running "target/debug/variables

The value of x in the inner scope 1is: 12

The value of x is: 6

Shadowing is different from marking a variable as mut because we’ll
get a compile-time error if we accidentally try to reassign to this variable
without using the let keyword. By using let , we can perform a few
transformations on a value but have the variable be immutable after those

transformations have been completed.

The other difference between mut and shadowing is that because we’re
effectively creating a new variable when we use the let keyword again,
we can change the type of the value but reuse the same name. For example,
say our program asks a user to show how many spaces they want between
some text by inputting space characters, and then we want to store that

input as a number:

let spaces =" "
let spaces = spaces.len();

The first spaces variable is a string type and the second spaces
variable is a number type. Shadowing thus spares us from having to come

up with different names, such as spaces_str and spaces_num;

instead, we can reuse the simpler spaces name. However, if we try to

use mut for this, as shown here, we’ll get a compile-time error:

let mut spaces = " ",
spaces = spaces.len();

The error says we’re not allowed to mutate a variable’s type:

$ cargo run
Compiling variables v0.1.0 (file:///projects/»
error[EO308]: mismatched types
--> src/main.rs:3:14

2 let mut spaces = " ",

|
|
[e expected due to tl
|
|

3 spaces = spaces.len();

ANANANNANNNANNN expected “&str, f

»

Now that we’ve explored how variables work, let’s look at more data

types they can have.

Data Types

Every value in Rust is of a certain data type, which tells Rust what kind of

data is being specified so it knows how to work with that data. We’ll look at

two data type subsets: scalar and compound.

Keep in mind that Rust is a statically typed language, which means that it
must know the types of all variables at compile time. The compiler can
usually infer what type we want to use based on the value and how we use
it. In cases when many types are possible, such as when we converted a

String to a numeric type using parse in “Comparing the Guess to the

Secret Number” on page 23, we must add a type annotation, like this:

let guess: u32 = "42" . parse().expect("Not a numbe

»

If we don’t add the : u32 type annotation shown in the preceding
code, Rust will display the following error, which means the compiler needs

more information from us to know which type we want to use:

$ cargo build
Compiling no_type_annotations v0.1.0 (file://,
error[E0282]: type annotations needed
--> src/main.rs:2:9
|
2 | let guess = "42".parse().expect('"Not a ni
| ANNAN consider giving "guess a type

4

You'’ll see different type annotations for other data types.

Scalar Types

A scalar type represents a single value. Rust has four primary scalar types:
integers, floating-point numbers, Booleans, and characters. You may
recognize these from other programming languages. Let’s jump into how

they work in Rust.
Integer Types

An integer is a number without a fractional component. We used one
integer type in Chapter 2, the u32 type. This type declaration indicates
that the value it’s associated with should be an unsigned integer (signed
integer types start with 1 instead of U) that takes up 32 bits of space. Tabl
e 3-1 shows the built-in integer types in Rust. We can use any of these

variants to declare the type of an integer value.

Table 3-1: Integer Types in Rust

Length Signed Unsigned

8-bit i8 us8
16-bit 116 uleé
32-bit 132 u32
64-bit 164 ue4
128-bit 1128 ul28
arch isize usize

Each variant can be either signed or unsigned and has an explicit size.
Signed and unsigned refer to whether it’s possible for the number to be
negative—in other words, whether the number needs to have a sign with it
(signed) or whether it will only ever be positive and can therefore be
represented without a sign (unsigned). It’s like writing numbers on paper:
when the sign matters, a number is shown with a plus sign or a minus sign;
however, when it’s safe to assume the number is positive, it’s shown with

no sign. Signed numbers are stored using two’s complement representation.

Each signed variant can store numbers from —(2"~1) to 2"-1-1
inclusive, where n is the number of bits that variant uses. So an 18 can
store numbers from —(27) to 27 — 1, which equals —128 to 127. Unsigned
variants can store numbers from 0 to 2" — 1, soa u8 can store numbers

from 0 to 28 — 1, which equals 0 to 255.

Additionally, the isize and usize types depend on the architecture
of the computer your program is running on, which is denoted in the table
as “arch”: 64 bits if you’re on a 64-bit architecture and 32 bits if you’re on a

32-bit architecture.

You can write integer literals in any of the forms shown in Table 3-2.
Note that number literals that can be multiple numeric types allow a type
suffix, such as 57u8, to designate the type. Number literals can also use
_as a visual separator to make the number easier to read, such as

1_000, which will have the same value as if you had specified 1000 .

Table 3-2: Integer Literals in Rust

Number literals Example

Decimal 98_222

Hex Oxff

Octal 0077

Binary Ob1111 OO0

Byte (u8 only) b'A'

So how do you know which type of integer to use? If you’re unsure,
Rust’s defaults are generally good places to start: integer types default to
132 . The primary situation in which you’d use 1size or usize is

when indexing some sort of collection.

INTEGER OVERFLOW

Let’s say you have a variable of type U8 that can hold values between 0 and 255. If you try to
change the variable to a value outside that range, such as 256, integer overflow will occur,
which can result in one of two behaviors. When you’re compiling in debug mode, Rust includes
checks for integer overflow that cause your program to panic at runtime if this behavior occurs.
Rust uses the term panicking when a program exits with an error; we’ll discuss panics in more

depth in “Unrecoverable Errors with panic!” on page 162.

When you’re compiling in release mode with the --release flag, Rust does not include
checks for integer overflow that cause panics. Instead, if overflow occurs, Rust performs two’s
complement wrapping. In short, values greater than the maximum value the type can hold “wrap
around” to the minimum of the values the type can hold. In the case of a u8, the value 256
becomes 0, the value 257 becomes 1, and so on. The program won’t panic, but the variable will
have a value that probably isn’t what you were expecting it to have. Relying on integer

overflow’s wrapping behavior is considered an error.

To explicitly handle the possibility of overflow, you can use these families of methods

provided by the standard library for primitive numeric types:

Wrap in all modes with the wrapping_* methods, such as wrapping_add .

Return the None value if there is overflow with the checked_* methods.

Return the value and a Boolean indicating whether there was overflow with the

overflowing_* methods.

Saturate at the value’s minimum or maximum values with the saturating_* methods.

Floating-Point Types

Rust also has two primitive types for floating-point numbers, which are

numbers with decimal points. Rust’s floating-point types are £32 and

64 , which are 32 bits and 64 bits in size, respectively. The default type is
f64 because on modern CPUs, it’s roughly the same speed as 32 but is

capable of more precision. All floating-point types are signed.

Here’s an example that shows floating-point numbers in action:

src¢/main.rs

fn main() {
let x = 2.0; // f64

let y: f32 = 3.0; // f32

Floating-point numbers are represented according to the IEEE-754
standard. The 32 type is a single-precision float, and 64 has double

precision.
Numeric Operations

Rust supports the basic mathematical operations you’d expect for all the
number types: addition, subtraction, multiplication, division, and remainder.
Integer division truncates toward zero to the nearest integer. The following

code shows how you’d use each numeric operation ina let statement:

src¢/main.rs

fn main() {
// addition
let sum = 5 + 10;

// subtraction
let difference = 95.5 - 4.3;

// multiplication
let product = 4 * 30;

// division
let quotient = 56.7 / 32.2;
let truncated = -5 / 3; // Results in -1

// remainder
let remainder = 43 % 5;

Each expression in these statements uses a mathematical operator and
evaluates to a single value, which is then bound to a variable. Appendix B

contains a list of all operators that Rust provides.

The Boolean Type

As in most other programming languages, a Boolean type in Rust has two
possible values: true and false . Booleans are one byte in size. The

Boolean type in Rust is specified using bool . For example:

src/main.rs

fn main() {

let t true;

let f: bool = false; // with explicit type ai

The main way to use Boolean values is through conditionals, such as an
1f expression. We’ll cover how 1f expressions work in Rust in “Control

Flow” on page 50.
The Character Type

Rust’s char type is the language’s most primitive alphabetic type. Here

are some examples of declaring char values:

src/main.rs

fn main() {
let ¢c = 'z2';
let z: char = 'Z"; // with explicit type ann
let heart_eyed_cat = '@’';

Note that we specify char literals with single quotes, as opposed to
string literals, which use double quotes. Rust’s char type is four bytes in
size and represents a Unicode scalar value, which means it can represent a
lot more than just ASCII. Accented letters; Chinese, Japanese, and Korean
characters; emoji; and zero-width spaces are all valid char values in
Rust. Unicode scalar values range from U+0000 to U+D7FF and

U+EQOO to U+1OFFFF inclusive. However, a “character” isn’t really a
concept in Unicode, so your human intuition for what a “character” is may
not match up with what a char is in Rust. We’ll discuss this topic in

detail in “Storing UTF-8 Encoded Text with Strings” on page 147.
Compound Types

Compound types can group multiple values into one type. Rust has two

primitive compound types: tuples and arrays.
The Tuple Type

A tuple is a general way of grouping together a number of values with a
variety of types into one compound type. Tuples have a fixed length: once

declared, they cannot grow or shrink in size.

We create a tuple by writing a comma-separated list of values inside
parentheses. Each position in the tuple has a type, and the types of the
different values in the tuple don’t have to be the same. We’ve added

optional type annotations in this example:

src/main.rs

fn main() {
let tup: (i32, f64, u8) = (500, 6.4, 1);

The variable tup binds to the entire tuple because a tuple is considered
a single compound element. To get the individual values out of a tuple, we

can use pattern matching to destructure a tuple value, like this:

src/main.rs

fn main() {
let tup = (500, 6.4, 1);

let (x, y, z) = tup;

println!("The value of y is: {y}");

This program first creates a tuple and binds it to the variable tup . It
then uses a pattern with let totake tup and turn it into three separate
variables, X, y,and z . This is called destructuring because it breaks the
single tuple into three parts. Finally, the program prints the value of vy,

whichis 6.4 .

We can also access a tuple element directly by using a period (.)

followed by the index of the value we want to access. For example:

src¢/main.rs

fn main() {
let x: (132, f64, u8) = (500, 6.4, 1);

let five_hundred = x.0;

let six_point_four = x.1;

let one = x.2;

This program creates the tuple X and then accesses each element of the
tuple using their respective indices. As with most programming languages,

the first index in a tuple is O.

The tuple without any values has a special name, unit. This value and its
corresponding type are both written () and represent an empty value or an
empty return type. Expressions implicitly return the unit value if they don’t

return any other value.

The Array Type

Another way to have a collection of multiple values is with an array.
Unlike a tuple, every element of an array must have the same type. Unlike

arrays in some other languages, arrays in Rust have a fixed length.

We write the values in an array as a comma-separated list inside square

brackets:

src/main.rs

fn main() {
let a = [1, 2, 3, 4, 5];

Arrays are useful when you want your data allocated on the stack rather
than the heap (we will discuss the stack and the heap more in Chapter 4) or
when you want to ensure you always have a fixed number of elements. An
array isn’t as flexible as the vector type, though. A vector is a similar
collection type provided by the standard library that is allowed to grow or
shrink in size. If you’re unsure whether to use an array or a vector, chances

are you should use a vector. Chapter 8 discusses vectors in more detail.

However, arrays are more useful when you know the number of elements

will not need to change. For example, if you were using the names of the

month in a program, you would probably use an array rather than a vector

because you know it will always contain 12 elements:

let months = ["January", "February", "March", "Aj
"August", "September", "October", '

You write an array’s type using square brackets with the type of each

element, a semicolon, and then the number of elements in the array, like so:

let a: [i32; 5] = [1, 2, 3, 4, 5];

Here, 132 is the type of each element. After the semicolon, the number

5 indicates the array contains five elements.

You can also initialize an array to contain the same value for each
element by specifying the initial value, followed by a semicolon, and then

the length of the array in square brackets, as shown here:
let a = [3; 5];
The array named a will contain 5 elements that will all be set to the

value 3 initially. This is the same as writing let a = [3, 3, 3, 3,

3]; butin a more concise way.

Accessing Array Elements

An array is a single chunk of memory of a known, fixed size that can be

allocated on the stack. You can access elements of an array using indexing,

like this:

src/main.rs

fn main() {

let a [1, 2, 3, 4, 5];

let first = a[0];
let second = a[1];

In this example, the variable named first will get the value 1
because that is the value at index [©] in the array. The variable named

second will get the value 2 fromindex [1] in the array.
Invalid Array Element Access

Let’s see what happens if you try to access an element of an array that is
past the end of the array. Say you run this code, similar to the guessing

game in Chapter 2, to get an array index from the user:

src/main.rs

use std::io;

fn main() {
let a = [1, 2, 3, 4, 5];

println!("Please enter an array index.");

let mut index = String::new();

10::stdin()
.read_line(&mut index)
.expect("Failed to read line");

let index: usize = index
Ltrim()
.parse()
.expect("Index entered was not a number'"

let element = a[index];
println!(

"The value of the element at index {inde:

)

This code compiles successfully. If you run this code using cargo

run andenter 0, 1, 2, 3, or 4, the program will print out the

corresponding value at that index in the array. If you instead enter a number

past the end of the array, such as 10, you’ll see output like this:

thread 'main' panicked at 'index out of bounds: f
note: run with "RUST_BACKTRACE=1" environment val

4

The program resulted in a runtime error at the point of using an invalid
value in the indexing operation. The program exited with an error message
and didn’t execute the final println! statement. When you attempt to
access an element using indexing, Rust will check that the index you’ve
specified is less than the array length. If the index is greater than or equal to
the length, Rust will panic. This check has to happen at runtime, especially
in this case, because the compiler can’t possibly know what value a user

will enter when they run the code later.

This is an example of Rust’s memory safety principles in action. In many
low-level languages, this kind of check is not done, and when you provide
an incorrect index, invalid memory can be accessed. Rust protects you
against this kind of error by immediately exiting instead of allowing the
memory access and continuing. Chapter 9 discusses more of Rust’s error
handling and how you can write readable, safe code that neither panics nor

allows invalid memory access.

Functions

Functions are prevalent in Rust code. You’ve already seen one of the most
important functions in the language: the main function, which is the entry
point of many programs. You’ve also seen the fn keyword, which allows

you to declare new functions.

Rust code uses snake case as the conventional style for function and
variable names, in which all letters are lowercase and underscores separate

words. Here’s a program that contains an example function definition:

src/main.rs

fn main() {
println!("Hello, world!");

another_function();

fn another_function() {
println!("Another function.");

We define a function in Rust by entering fn followed by a function
name and a set of parentheses. The curly brackets tell the compiler where

the function body begins and ends.

We can call any function we’ve defined by entering its name followed by
a set of parentheses. Because another_function is defined in the
program, it can be called from inside the main function. Note that we
defined another_function dfter the main function in the source
code; we could have defined it before as well. Rust doesn’t care where you
define your functions, only that they’re defined somewhere in a scope that

can be seen by the caller.

Let’s start a new binary project named functions to explore functions
further. Place the another_function example in src¢/main.rs and run

it. You should see the following output:

$ cargo run
Compiling functions v0.1.0 (file:///projects/s
Finished dev [unoptimized + debuginfo] target
Running "target/debug/functions’
Hello, world!
Another function.

The lines execute in the order in which they appear in the main
function. First the “Hello, world!” message prints, and then

another_function is called and its message is printed.

Parameters

We can define functions to have parameters, which are special variables
that are part of a function’s signature. When a function has parameters, you
can provide it with concrete values for those parameters. Technically, the
concrete values are called arguments, but in casual conversation, people
tend to use the words parameter and argument interchangeably for either
the variables in a function’s definition or the concrete values passed in

when you call a function.

In this version of another_function we add a parameter:

src/main.rs

fn main() {
another_function(5);

fn another_function(x: 132) {
println! ("The value of x is: {x}");

Try running this program; you should get the following output:

$ cargo run
Compiling functions v0.1.0 (file:///projects/+

Finished dev [unoptimized + debuginfo] target
Running "target/debug/functions’
The value of x is: 5

The declaration of another_function has one parameter named
X . The type of X is specified as 132 . When we pass 5 in to '

another_function,the println! macro puts 5 where the pair of

curly brackets containing X was in the format string.

In function signatures, you must declare the type of each parameter. This
is a deliberate decision in Rust’s design: requiring type annotations in
function definitions means the compiler almost never needs you to use them
elsewhere in the code to figure out what type you mean. The compiler is
also able to give more helpful error messages if it knows what types the

function expects.

When defining multiple parameters, separate the parameter declarations

with commas, like this:

src¢/main.rs

fn main() {
print_labeled_measurement(5, 'h');

fn print_labeled_measurement(value: 132, unit_lal
println!("The measurement is: {value}{unit_1l:

This example creates a function named
print_labeled_measurement with two parameters. The first
parameter is named value andisan 132 . The second is named
unit_label andistype char . The function then prints text

containing both the value andthe unit_label.

Let’s try running this code. Replace the program currently in your
functions project’s src/main.rs file with the preceding example and run it

using cargo run:

$ cargo run
Compiling functions v0.1.0 (file:///projects/s
Finished dev [unoptimized + debuginfo] target
Running " target/debug/functions”
The measurement is: 5h

Because we called the function with 5 as the value for value and
"h' asthe value for unit_label, the program output contains those

values.

Statements and Expressions

Function bodies are made up of a series of statements optionally ending in
an expression. So far, the functions we’ve covered haven’t included an
ending expression, but you have seen an expression as part of a statement.
Because Rust is an expression-based language, this is an important
distinction to understand. Other languages don’t have the same distinctions,
so let’s look at what statements and expressions are and how their

differences affect the bodies of functions.

e Statements are instructions that perform some action and do not return a
value.

e Expressions evaluate to a resultant value.
Let’s look at some examples.

We’ve actually already used statements and expressions. Creating a
variable and assigning a value to it with the 1let keyword is a statement.

In Listing 3-1, let y = 6; is a statement.

src/main.rs

fn main() {
let vy = 6;

Listing 3-1: A main function declaration containing one statement

Function definitions are also statements; the entire preceding example is

a statement in itself.

Statements do not return values. Therefore, you can’t assigna let
statement to another variable, as the following code tries to do; you’ll get an

error:

src/main.rs

fn main() {
let x = (let y = 6);

When you run this program, the error you’ll get looks like this:

$ cargo run
Compiling functions v0.1.0 (file:///projects/s
error: expected expression, found statement (letf
--> src/main.rs:2:14
2 let x = (let y = 6);

|
|
| NNNNNNNNN
|

note: variable declaration using "let 1is a

error[E0658]: "let expressions in this position
--> src/main.rs:2:14

2 let x = (let y = 6);

NNNNNNNNN

= note: see issue #53667 <https://github.com/ri
more information

The let y = 6 statement does not return a value, so there isn’t
anything for X to bind to. This is different from what happens in other
languages, such as C and Ruby, where the assignment returns the value of
the assignment. In those languages, you can write X = y = 6 and have

both X and y have the value 6 ; that is not the case in Rust.

Expressions evaluate to a value and make up most of the rest of the code
that you’ll write in Rust. Consider a math operation, suchas 5 + 6,
which is an expression that evaluates to the value 11 . Expressions can be»
part of statements: in Listing 3-1, the 6 in the statement let y = 6; is
an expression that evaluates to the value 6 . Calling a function is an
expression. Calling a macro is an expression. A new scope block created

with curly brackets is an expression, for example:

src/main.rs

fn main() {
O let y = {@®
let x = 3;
© x +1
Iy

println!("The value of y is: {y}");

The expression @ is a block that, in this case, evaluates to 4 . That value
gets bound to y as part of the 1let statement @. Note the line without a
semicolon at the end ©, which is unlike most of the lines you’ve seen so
far. Expressions do not include ending semicolons. If you add a semicolon
to the end of an expression, you turn it into a statement, and it will then not
return a value. Keep this in mind as you explore function return values and

expressions next.

Functions with Return Values

Functions can return values to the code that calls them. We don’t name
return values, but we must declare their type after an arrow (->). In Rust,
the return value of the function is synonymous with the value of the final
expression in the block of the body of a function. You can return early from

a function by using the return keyword and specifying a value, but most

functions return the last expression implicitly. Here’s an example of a

function that returns a value:

src¢/main.rs

fn five() -> i32 {
S

fn main() {
let x = five();

println!("The value of x is: {x}");

There are no function calls, macros, or even let statements in the
five function—just the number 5 by itself. That’s a perfectly valid
function in Rust. Note that the function’s return type is specified too, as ->

132 . Try running this code; the output should look like this:

$ cargo run
Compiling functions v0.1.0 (file:///projects/+
Finished dev [unoptimized + debuginfo] targetf
Running "target/debug/functions’
The value of x is: 5

The 5 in five is the function’s return value, which is why the return
type is 132 . Let’s examine this in more detail. There are two important
bits: first, the line 1et x = five(); shows that we’re using the return
value of a function to initialize a variable. Because the function five

returns a 5, that line is the same as the following:

let x = 5;

Second, the five function has no parameters and defines the type of
the return value, but the body of the function is a lonely 5 with no

semicolon because it’s an expression whose value we want to return.

Let’s look at another example:

src/main.rs

fn main() {
let x = plus_one(5);

println!("The value of x is: {x}");

fn plus_one(x: 132) -> 132 {
x + 1

Running this code will print The value of x is: 6.Butif we
place a semicolon at the end of the line containing X + 1, changing it

from an expression to a statement, we’ll get an error:

src/main.rs

fn main() {
let x = plus_one(5);

println!("The value of x is: {x}");

fn plus_one(x: 132) -> 132 {
X + 1;

Compiling this code produces an error, as follows:

$ cargo run
Compiling functions v0.1.0 (file:///projects/:
error[EO308]: mismatched types
--> src/main.rs:7:24
7 fn plus_one(x: 132) -> 132 {
-------- ANN expected 1327, f

| implicitly returns () as its body has nt
8 | X + 1;
| - help: remove this semicolon

4

The main error message, mismatched types, reveals the core issue
with this code. The definition of the function plus_one says that it will
return an 132, but statements don’t evaluate to a value, which is expressed
by (), the unit type. Therefore, nothing is returned, which contradicts the
function definition and results in an error. In this output, Rust provides a
message to possibly help rectify this issue: it suggests removing the

semicolon, which would fix the error.

Comments

All programmers strive to make their code easy to understand, but
sometimes extra explanation is warranted. In these cases, programmers
leave comments in their source code that the compiler will ignore but

people reading the source code may find useful.

Here’s a simple comment:

// hello, world

In Rust, the idiomatic comment style starts a comment with two slashes,

and the comment continues until the end of the line. For comments that

extend beyond a single line, you’ll need to include // on each line, like

this:

// So we're doing something complicated here, lol
// multiple lines of comments to do it! Whew! Hoj
// explain what's going on.

Comments can also be placed at the end of lines containing code:

src/main.rs

fn main() {
let lucky_number = 7; // I'm feeling lucky t«

But you’ll more often see them used in this format, with the comment on

a separate line above the code it’s annotating:

src/main.rs

fn main() {
// I'm feeling lucky today
let lucky_number = 7;

Rust also has another kind of comment, documentation comments, which

we’ll discuss in “Publishing a Crate to Crates.io” on page 297.

Control Flow

The ability to run some code depending on whether a condition is true
and to run some code repeatedly while a condition is true are basic
building blocks in most programming languages. The most common
constructs that let you control the flow of execution of Rust code are if

expressions and loops.
if Expressions

An if expression allows you to branch your code depending on
conditions. You provide a condition and then state, “If this condition is met,
run this block of code. If the condition is not met, do not run this block of

code.”

Create a new project called branches in your projects directory to explore

the if expression. In the src/main.rs file, input the following:

src/main.rs

fn main() {
let number = 3;

if number < 5 {

println!("condition was true'");
} else {

println!("condition was false'");

All if expressions start with the keyword if , followed by a
condition. In this case, the condition checks whether or not the variable
number has a value less than 5. We place the block of code to execute if
the condition is true immediately after the condition inside curly
brackets. Blocks of code associated with the conditions in if expressions
are sometimes called arms, just like the arms in match expressions that

we discussed in “Comparing the Guess to the Secret Number” on page 23.

Optionally, we can also include an else expression, which we chose to
do here, to give the program an alternative block of code to execute should
the condition evaluate to false . If you don’t provide an else
expression and the condition is false , the program will just skip the if

block and move on to the next bit of code.

Try running this code; you should see the following output:

$ cargo run
Compiling branches v0.1.0 (file:///projects/bi

Finished dev [unoptimized + debuginfo] target
Running "target/debug/branches"
condition was true

Let’s try changing the value of number to a value that makes the

condition false to see what happens:

7

let number

Run the program again, and look at the output:

$ cargo run
Compiling branches v0.1.0 (file:///projects/bi
Finished dev [unoptimized + debuginfo] targetf
Running "target/debug/branches"
condition was false

It’s also worth noting that the condition in this code must be a bool . If
the condition isn’ta bool, we’ll get an error. For example, try running the

following code:

src/main.rs

fn main() {

let number 3;

if number {
println!("number was three");

The i1if condition evaluates to a value of 3 this time, and Rust throws

dll error:

$ cargo run
Compiling branches v0.1.0 (file:///projects/bi
error[EO308]: mismatched types
--> src/main.rs:4:8

|
4 | if number {

| ANNNAN expected "bool , found integer

4

The error indicates that Rust expected a bool but got an integer. Unlike
languages such as Ruby and JavaScript, Rust will not automatically try to
convert non-Boolean types to a Boolean. You must be explicit and always
provide if with a Boolean as its condition. If we want the if code block
to run only when a number is not equal to @, for example, we can change

the if expression to the following:

src/main.rs

fn main() {
3;

let number

1f number = 0 {
println! ("number was something other thai

Running this code will print humber was something other

than zero.

Handling Multiple Conditions with else if

You can use multiple conditions by combining 1f and else inan

else if expression. For example:

src/main.rs

fn main() {
let number

6;

if number % 4 == 0 {
println!("number is divisible by 4");
} else if number % 3 == 0 {

println! ("number is divisible by 3");
} else if number % 2 == 0 {
println! ("number is divisible by 2");
} else {
println! ("number is not divisible by 4,

This program has four possible paths it can take. After running it, you

should see the following output:

$ cargo run
Compiling branches v0.1.0 (file:///projects/bi
Finished dev [unoptimized + debuginfo] target
Running "target/debug/branches"
number is divisible by 3

When this program executes, it checks each 1f expression in turn and
executes the first body for which the condition evaluates to true . Note
that even though 6 is divisible by 2, we don’t see the output number is
divisible by 2, nordo we seethe number is not divisible
by 4, 3, or 2 textfromthe else block. That’s because Rust only
executes the block for the first true condition, and once it finds one, it

doesn’t even check the rest.

Using too many else 1f expressions can clutter your code, so if you
have more than one, you might want to refactor your code. Chapter 6
describes a powerful Rust branching construct called match for these

cases.
Using if in a let Statement

Because if is an expression, we can use it on the right side of a let

statement to assign the outcome to a variable, as in Listing 3-2.

src/main.rs

fn main() {
let condition = true;
let number = if condition { 5 } else { 6 };

println!("The value of number 1is: {number}")

Listing 3-2: Assigning the result of an 1T expression to a variable

The number variable will be bound to a value based on the outcome of

the 1f expression. Run this code to see what happens:

$ cargo run
Compiling branches v0.1.0 (file:///projects/bi

Finished dev [unoptimized + debuginfo] target
Running "target/debug/branches"
The value of number is: 5

Remember that blocks of code evaluate to the last expression in them,
and numbers by themselves are also expressions. In this case, the value of ,
the whole if expression depends on which block of code executes. This
means the values that have the potential to be results from each arm of the

1f must be the same type; in Listing 3-2, the results of both the if arm
and the else arm were 132 integers. If the types are mismatched, as in

the following example, we’ll get an error:

src/main.rs

fn main() {
let condition = true;

let number = if condition { 5 } else { "six"

println!("The value of number 1is: {number}")

When we try to compile this code, we’ll get an error. The 1f and

else arms have value types that are incompatible, and Rust indicates

exactly where to find the problem in the program:

$ cargo run

Compiling branches v0.1.0 (file:///projects/bi
error[EO308]: "if and "else have incompatible

--> src/main.rs:4:44

4

The expression in the 1f block evaluates to an integer, and the
expression in the else block evaluates to a string. This won’t work

because variables must have a single type, and Rust needs to know at

let number = if condition { 5 } else { ":

expected bec:

compile time what type the number variable is, definitively. Knowing the

type of number lets the compiler verify the type is valid everywhere we

use number . Rust wouldn’t be able to do that if the type of number

was only determined at runtime; the compiler would be more complex and

would make fewer guarantees about the code if it had to keep track of

multiple hypothetical types for any variable.

Repetition with Loops

It’s often useful to execute a block of code more than once. For this task,
Rust provides several loops, which will run through the code inside the loop
body to the end and then start immediately back at the beginning. To

experiment with loops, let’s make a new project called loops.

Rust has three kinds of loops: 1o0p, while ,f and for . Let’s try each

one.
Repeating Code with loop

The loop keyword tells Rust to execute a block of code over and over

again forever or until you explicitly tell it to stop.

As an example, change the src/main.rs file in your loops directory to look

like this:

src¢/main.rs

fn main() {
loop {
println!("again!");

When we run this program, we’ll see again! printed over and over
continuously until we stop the program manually. Most terminals support
the keyboard shortcut CTRL-C to interrupt a program that is stuck in a

continual loop. Give it a try:

$ cargo run
Compiling loops v0.1.0 (file:///projects/loop:

Finished dev [unoptimized + debuginfo] target
Running "target/debug/loops"

again!

again!

again!

again!

NCagain!

The symbol AC represents where you pressed CTRL-C. You may or
may not see the word again! printed after the AC, depending on where

the code was in the loop when it received the interrupt signal.

Fortunately, Rust also provides a way to break out of a loop using code.
You can place the break keyword within the loop to tell the program
when to stop executing the loop. Recall that we did this in the guessing
game in “Quitting After a Correct Guess” on page 28 to exit the program

when the user won the game by guessing the correct number.

We also used continue in the guessing game, which in a loop tells
the program to skip over any remaining code in this iteration of the loop

and go to the next iteration.
Returning Values from Loops

One of the uses of a 100p is to retry an operation you know might fail,
such as checking whether a thread has completed its job. You might also
need to pass the result of that operation out of the loop to the rest of your
code. To do this, you can add the value you want returned after the break
expression you use to stop the loop; that value will be returned out of the

loop so you can use it, as shown here:

fn main() {
let mut counter = 0;

let result = loop {
counter += 1;

if counter == 10 {
break counter * 2;

+s

println!("The result is {result}");

Before the loop, we declare a variable named counter and initialize it
to O . Then we declare a variable named result to hold the value
returned from the loop. On every iteration of the loop, we add 1 to the

counter variable, and then check whether the counter is equal to
10 . When it is, we use the break keyword with the value counter *
2 . After the loop, we use a semicolon to end the statement that assigns the
value to result . Finally, we print the value in result , which in this

caseis 20.

Loop Labels to Disambiguate Between Multiple Loops

If you have loops within loops, break and continue apply to the
innermost loop at that point. You can optionally specify a loop label on a
loop that you can then use with break or continue to specify that
those keywords apply to the labeled loop instead of the innermost loop.
Loop labels must begin with a single quote. Here’s an example with two

nested loops:

fn main() {
let mut count = 0;
'counting_up: loop {
println!("count = {count}");
let mut remaining = 10;

loop {
println!("remaining = {remaining}");

if remaining == 9 {
break;

}
if count == 2 {
break 'counting_up;

}

remaining -= 1;

count += 1;

¥
println!("End count = {count}");

The outer loop has the label 'counting_up, and it will count up
from O to 2. The inner loop without a label counts down from 10 to 9. The
first break that doesn’t specify a label will exit the inner loop only. The

break 'counting_up; statement will exit the outer loop. This code

prints:
Compiling loops v0.1.0 (file:///projects/loop:
Finished dev [unoptimized + debuginfo] targetf
Running "target/debug/loops"
count = 0

remaining = 10
9

remaining

count = 1
remaining = 10
remaining = 9
count = 2
remaining = 10
End count = 2

Conditional Loops with while

A program will often need to evaluate a condition within a loop. While the
condition is true , the loop runs. When the condition ceases to be true,
the program calls break , stopping the loop. It’s possible to implement
behavior like this using a combination of 1loop, if, else, and

break ; you could try that now in a program, if you’d like. However, this”
pattern is so common that Rust has a built-in language construct for it,
called a while loop. In Listing 3-3, we use while to loop the program
three times, counting down each time, and then, after the loop, print a

message and exit.

src¢/main.rs

fn main() {
let mut number = 3;

while number !'= 0 {

println! (" {number}!");

number -= 1;

println! ("LIFTOFF!!!1");

Listing 3-3: Using a while loop to run code while a condition evaluates

to true

This construct eliminates a lot of nesting that would be necessary if you
used loop, if, else,and break, and it’s clearer. While a condition

evaluates to true, the code runs; otherwise, it exits the loop.

Looping Through a Collection with for

You can choose to use the while construct to loop over the elements of a
collection, such as an array. For example, the loop in Listing 3-4 prints each

element in the array a .

src/main.rs

fn main() {
let a = [10, 20, 30, 40, 50];
let mut index = 0;

while index < 5 {
println!("the value is: {}", a[index]);

index += 1;

Listing 3-4: Looping through each element of a collection using a while

loop

Here, the code counts up through the elements in the array. It starts at

index O, and then loops until it reaches the final index in the array (that is,

when index < 5 isnolonger true). Running this code will print

every element in the array:

$ cargo run

the
the
the
the
the

Compiling loops v0.1.0 (file:///projects/loop:

Finished dev [unoptimized + debuginfo] target
Running

value
value
value
value
value

is:
is:
is:
is:
is:

"target/debug/loops
10
20
30
40
50

All five array values appear in the terminal, as expected. Even though
index will reach a value of 5 at some point, the loop stops executing

before trying to fetch a sixth value from the array.

However, this approach is error prone; we could cause the program to
panic if the index value or test condition is incorrect. For example, if you
changed the definition of the a array to have four elements but forgot to
update the condition to while index < 4, the code would panic. It’s
also slow, because the compiler adds runtime code to perform the
conditional check of whether the index is within the bounds of the array on

every iteration through the loop.

As a more concise alternative, you can use a for loop and execute
some code for each item in a collection. A for loop looks like the code in

Listing 3-5.

src/main.rs

fn main() {
let a = [10, 20, 30, 40, 50];

for element in a {
println!("the value is: {element}");

Listing 3-5: Looping through each element of a collection using a for

loop

When we run this code, we’ll see the same output as in Listing 3-4. More
importantly, we’ve now increased the safety of the code and eliminated the
chance of bugs that might result from going beyond the end of the array or

not going far enough and missing some items.

Using the for loop, you wouldn’t need to remember to change any
other code if you changed the number of values in the array, as you would

with the method used in Listing 3-4.

The safety and conciseness of for loops make them the most
commonly used loop construct in Rust. Even in situations in which you
want to run some code a certain number of times, as in the countdown
example that used a while loop in Listing 3-3, most Rustaceans would
usea for loop. The way to do that would be to use a Range , provided
by the standard library, which generates all numbers in sequence starting

from one number and ending before another number.

Here’s what the countdown would look like using a for loop and

another method we’ve not yet talked about, rev , to reverse the range:

src/main.rs

fn main() {
for number in (1..4).rev() {
println! ("{number}!"),;

}
println! ("LIFTOFF!!!");

This code is a bit nicer, isn’t it?

Summary

You made it! This was a sizable chapter: you learned about variables, scalar
and compound data types, functions, comments, if expressions, and
loops! To practice with the concepts discussed in this chapter, try building

programs to do the following:

e Convert temperatures between Fahrenheit and Celsius.
e Generate the nth Fibonacci number.

e Print the lyrics to the Christmas carol “The Twelve Days of Christmas,’

taking advantage of the repetition in the song.

When you’re ready to move on, we’ll talk about a concept in Rust that

doesn’t commonly exist in other programming languages: ownership.

OceanofPDF.com

https://oceanofpdf.com/

4
UNDERSTANDING OWNERSHIP

Ownership is Rust’s most unique feature and has deep
implications for the rest of the language. It enables Rust to

make memory safety guarantees without needing a garbage

/ collector, so it’s important to understand how ownership
works. In this chapter, we’ll talk about ownership as well as
several related features: borrowing, slices, and how Rust

lays data out in memory.

What Is Ownership?

Ownership is a set of rules that govern how a Rust program manages
memory. All programs have to manage the way they use a computer’s
memory while running. Some languages have garbage collection that
regularly looks for no-longer-used memory as the program runs; in other
languages, the programmer must explicitly allocate and free the memory.
Rust uses a third approach: memory is managed through a system of
ownership with a set of rules that the compiler checks. If any of the rules
are violated, the program won’t compile. None of the features of ownership

will slow down your program while it’s running.

Because ownership is a new concept for many programmers, it does take
some time to get used to. The good news is that the more experienced you
become with Rust and the rules of the ownership system, the easier you’ll

find it to naturally develop code that is safe and efficient. Keep at it!

When you understand ownership, you’ll have a solid foundation for
understanding the features that make Rust unique. In this chapter, you’ll
learn ownership by working through some examples that focus on a very

common data structure: strings.

THE STACK AND THE HEAP

Many programming languages don’t require you to think about the stack and the heap very
often. But in a systems programming language like Rust, whether a value is on the stack or the
heap affects how the language behaves and why you have to make certain decisions. Parts of
ownership will be described in relation to the stack and the heap later in this chapter, so here is a

brief explanation in preparation.

Both the stack and the heap are parts of memory available to your code to use at runtime, but
they are structured in different ways. The stack stores values in the order it gets them and
removes the values in the opposite order. This is referred to as last in, first out. Think of a stack
of plates: when you add more plates, you put them on top of the pile, and when you need a
plate, you take one off the top. Adding or removing plates from the middle or bottom wouldn’t
work as well! Adding data is called pushing onto the stack, and removing data is called popping
off the stack. All data stored on the stack must have a known, fixed size. Data with an unknown

size at compile time or a size that might change must be stored on the heap instead.

The heap is less organized: when you put data on the heap, you request a certain amount of
space. The memory allocator finds an empty spot in the heap that is big enough, marks it as
being in use, and returns a pointer, which is the address of that location. This process is called
allocating on the heap and is sometimes abbreviated as just allocating (pushing values onto the
stack is not considered allocating). Because the pointer to the heap is a known, fixed size, you
can store the pointer on the stack, but when you want the actual data, you must follow the
pointer. Think of being seated at a restaurant. When you enter, you state the number of people in
your group, and the host finds an empty table that fits everyone and leads you there. If someone

in your group comes late, they can ask where you’ve been seated to find you.

Pushing to the stack is faster than allocating on the heap because the allocator never has to
search for a place to store new data; that location is always at the top of the stack.
Comparatively, allocating space on the heap requires more work because the allocator must first
find a big enough space to hold the data and then perform bookkeeping to prepare for the next

allocation.

Accessing data in the heap is slower than accessing data on the stack because you have to
follow a pointer to get there. Contemporary processors are faster if they jump around less in
memory. Continuing the analogy, consider a server at a restaurant taking orders from many
tables. It’s most efficient to get all the orders at one table before moving on to the next table.
Taking an order from table A, then an order from table B, then one from A again, and then one
from B again would be a much slower process. By the same token, a processor can do its job
better if it works on data that’s close to other data (as it is on the stack) rather than farther away

(as it can be on the heap).

When your code calls a function, the values passed into the function (including, potentially,
pointers to data on the heap) and the function’s local variables get pushed onto the stack. When

the function is over, those values get popped off the stack.

Keeping track of what parts of code are using what data on the heap, minimizing the amount
of duplicate data on the heap, and cleaning up unused data on the heap so you don’t run out of
space are all problems that ownership addresses. Once you understand ownership, you won’t
need to think about the stack and the heap very often, but knowing that the main purpose of

ownership is to manage heap data can help explain why it works the way it does.

Ownership Rules

First, let’s take a look at the ownership rules. Keep these rules in mind as

we work through the examples that illustrate them:

e Each value in Rust has an owner.
e There can only be one owner at a time.

e When the owner goes out of scope, the value will be dropped.

Variable Scope

Now that we’re past basic Rust syntax, we won’t include all the fn
main() { code in examples, so if you’re following along, make sure to
put the following examples inside a main function manually. As a result,
our examples will be a bit more concise, letting us focus on the actual

details rather than boilerplate code.

As a first example of ownership, we’ll look at the scope of some
variables. A scope is the range within a program for which an item is valid.

Take the following variable:

let s = "hello";

The variable S refers to a string literal, where the value of the string is
hardcoded into the text of our program. The variable is valid from the point
at which it’s declared until the end of the current scope. Listing 4-1 shows a

program with comments annotating where the variable S would be valid.

{ // s 1s not valid here, s:
let s = "hello"; // s 1s valid from this p¢

// do stuff with s
} // this scope 1s now over,

4

Listing 4-1: A variable and the scope in which it is valid
In other words, there are two important points in time here:

e When s comes into scope, it is valid.

[t remains valid until it goes out of scope.

At this point, the relationship between scopes and when variables are
valid is similar to that in other programming languages. Now we’ll build on

top of this understanding by introducing the String type.
The String Type

To illustrate the rules of ownership, we need a data type that is more
complex than those we covered in “Data Types” on page 36. The types
covered previously are of a known size, can be stored on the stack and
popped off the stack when their scope is over, and can be quickly and
trivially copied to make a new, independent instance if another part of code
needs to use the same value in a different scope. But we want to look at data
that is stored on the heap and explore how Rust knows when to clean up

that data, and the String type is a great example.

We’ll concentrate on the parts of String that relate to ownership.
These aspects also apply to other complex data types, whether they are
provided by the standard library or created by you. We’ll discuss String
in more depth in Chapter 8.

We’ve already seen string literals, where a string value is hardcoded into
our program. String literals are convenient, but they aren’t suitable for
every situation in which we may want to use text. One reason is that they’re
immutable. Another is that not every string value can be known when we
write our code: for example, what if we want to take user input and store it?
For these situations, Rust has a second string type, String . This type
manages data allocated on the heap and as such is able to store an amount
of text that is unknown to us at compile time. You can createa String

from a string literal using the from function, like so:

let s = String::from("hello");

The double colon :: operator allows us to namespace this particular
from function under the String type rather than using some sort of
name like string_from. We’ll discuss this syntax more in “Method
Syntax” on page 97, and when we talk about namespacing with modules in

“Paths for Referring to an Item in the Module Tree” on page 125.

This kind of string can be mutated:

let mut s = String::from("hello");

s.push_str(", world!"); // push_str() appends a .

println!("{s}"); // this will print "hello, worl«

So, what’s the difference here? Why can String be mutated but

literals cannot? The difference is in how these two types deal with memory.
Memory and Allocation

In the case of a string literal, we know the contents at compile time, so the
text is hardcoded directly into the final executable. This is why string
literals are fast and efficient. But these properties only come from the string
literal’s immutability. Unfortunately, we can’t put a blob of memory into the
binary for each piece of text whose size is unknown at compile time and

whose size might change while running the program.

With the String type, in order to support a mutable, growable piece of
text, we need to allocate an amount of memory on the heap, unknown at

compile time, to hold the contents. This means:

e The memory must be requested from the memory allocator at runtime.
e We need a way of returning this memory to the allocator when we’re

done with our String.

That first part is done by us: when we call String: :from, its
implementation requests the memory it needs. This is pretty much universal

in programming languages.

However, the second part is different. In languages with a garbage
collector (GC), the GC keeps track of and cleans up memory that isn’t
being used anymore, and we don’t need to think about it. In most languages
without a GC, it’s our responsibility to identify when memory is no longer
being used and to call code to explicitly free it, just as we did to request it.
Doing this correctly has historically been a difficult programming problem.
If we forget, we’ll waste memory. If we do it too early, we’ll have an
invalid variable. If we do it twice, that’s a bug too. We need to pair exactly

one allocate with exactly one free.

Rust takes a different path: the memory is automatically returned once
the variable that owns it goes out of scope. Here’s a version of our scope

example from Listing 4-1 using a String instead of a string literal:

let s = String::from("hello"); // s is valid

// do stuff with s
} // this scope
// longer val:

4

There is a natural point at which we can return the memory our
String needs to the allocator: when s goes out of scope. When a
variable goes out of scope, Rust calls a special function for us. This

function is called drop, and it’s where the author of String can put the

code to return the memory. Rust calls drop automatically at the closing

curly bracket.

NOTE

In C++, this pattern of deallocating resources at the end of an
item’s lifetime is sometimes called Resource Acquisition Is
Initialization (RAII). The drop function in Rust will be familiar to

you if you’ve used RAII patterns.

This pattern has a profound impact on the way Rust code is written. It
may seem simple right now, but the behavior of code can be unexpected in
more complicated situations when we want to have multiple variables use
the data we’ve allocated on the heap. Let’s explore some of those situations

now.

Variables and Data Interacting with Move

Multiple variables can interact with the same data in different ways in Rust.

Let’s look at an example using an integer in Listing 4-2.

let x = 5;

let v = x;

Listing 4-2: Assigning the integer value of variable x to y

We can probably guess what this is doing: “bind the value 5 to X ; then
make a copy of the value in X and bind it to y .” We now have two
variables, X and Yy, and both equal 5. This is indeed what is happening,
because integers are simple values with a known, fixed size, and these two

5 values are pushed onto the stack.

Now let’s look at the String version:

let si1 String::from("hello");
let s2 = s1;

This looks very similar, so we might assume that the way it works would
be the same: that is, the second line would make a copy of the value in s1

and bind it to s2 . But this isn’t quite what happens.

Take a look at Figure 4-1 to see what is happening to String under the
covers. A String is made up of three parts, shown on the left: a pointer
to the memory that holds the contents of the string, a length, and a capacity.
This group of data is stored on the stack. On the right is the memory on the

heap that holds the contents.

51

name |value index|value
pir - O h
len 5] e
capacity| 5 2 |
3 |
4 o

Figure 4-1: Representation in memory of a String holding the value "hello" boundto s1

The length is how much memory, in bytes, the contents of the String
are currently using. The capacity is the total amount of memory, in bytes,
that the String has received from the allocator. The difference between
length and capacity matters, but not in this context, so for now, it’s fine to

ignore the capacity.

When we assign s1 to s2,the String data is copied, meaning we
copy the pointer, the length, and the capacity that are on the stack. We do
not copy the data on the heap that the pointer refers to. In other words, the

data representation in memory looks like Figure 4-2.

51

name |value
ptr o
len S
capacity| 5 index|value
0 h
-] e
name vulueJ 2 |
ofr - 3 |
len 5 4 2
capacity| 5

Figure 4-2: Representation in memory of the variable S2 that has a copy of the pointer, length, and

capacity of s1

The representation does not look like Figure 4-3, which is what memory
would look like if Rust instead copied the heap data as well. If Rust did this,
the operation S2 = S1 could be very expensive in terms of runtime

performance if the data on the heap were large.

52

name |value index|value
pir - O h
len 5] e
capacity| 5 2 |
3 |
4 o

51

name |value index|value
pir = O h
len 5] e
capacity| 5 2 |
3 |
4 o

Figure 4-3: Another possibility for what S2 = s1 might do if Rust copied the heap data as well

Earlier, we said that when a variable goes out of scope, Rust
automatically calls the drop function and cleans up the heap memory for
that variable. But Figure 4-2 shows both data pointers pointing to the same
location. This is a problem: when s2 and s1 go out of scope, they will
both try to free the same memory. This is known as a double free error and
is one of the memory safety bugs we mentioned previously. Freeing
memory twice can lead to memory corruption, which can potentially lead to

security vulnerabilities.

To ensure memory safety, after the line let s2 = s1; , Rust

considers s1 as no longer valid. Therefore, Rust doesn’t need to free

anything when s1 goes out of scope. Check out what happens when you

try touse s1 after s2 is created; it won’t work:

let s1
let s2

String::from("hello");
s1;

println!("{s1}, world!");

You’ll get an error like this because Rust prevents you from using the

invalidated reference:

error[EO382]: borrow of moved value: "s1°
--> src/main.rs:5:28
|
2 | let s1 = String::from("hello");
| -- move occurs because "s1 has type
does not implement the "Copy trait
3 | let s2 = s1;
| -- value moved here
4 |
5 | println!("{s1}, world!");
| AN value borrowed here after 1
>

If you’ve heard the terms shallow copy and deep copy while working

with other languages, the concept of copying the pointer, length, and

capacity without copying the data probably sounds like making a shallow
copy. But because Rust also invalidates the first variable, instead of being
called a shallow copy, it’s known as a move. In this example, we would say
that s1 was moved into S2 . So, what actually happens is shown in Figure

4-4.

51
name |value
pir N
len 5
capacity| 5 index|value
0 h
52 I °
name |value 2 |
ofr 7 3 |
len 5 4 °
capacity| 5

Figure 4-4: Representation in memory after S1 has been invalidated

That solves our problem! With only s2 valid, when it goes out of scope

it alone will free the memory, and we’re done.

In addition, there’s a design choice that’s implied by this: Rust will never
automatically create “deep” copies of your data. Therefore, any automatic

copying can be assumed to be inexpensive in terms of runtime performance.

Variables and Data Interacting with Clone

If we do want to deeply copy the heap data of the String, not just the
stack data, we can use a common method called clone . We’ll discuss
method syntax in Chapter 5, but because methods are a common feature in

many programming languages, you’ve probably seen them before.

Here’s an example of the clone method in action:

let s1
let s2

String::from("hello");
sl.clone();

println!("sl1 = {s1}, s2 = {s2}");

This works just fine and explicitly produces the behavior shown in Figure

4-3, where the heap data does get copied.

When you see a call to clone, you know that some arbitrary code is
being executed and that code may be expensive. It’s a visual indicator that

something different is going on.

Stack-Only Data: Copy

There’s another wrinkle we haven’t talked about yet. This code using

integers—part of which was shown in Listing 4-2—works and is valid:

let x = 5;
let vy = x;

println!("x = {x}, y = {y}");

But this code seems to contradict what we just learned: we don’t have a

callto clone, but x is still valid and wasn’t moved into y .

The reason is that types such as integers that have a known size at
compile time are stored entirely on the stack, so copies of the actual values
are quick to make. That means there’s no reason we would want to prevent

X from being valid after we create the variable y . In other words, there’s
no difference between deep and shallow copying here, so calling clone
wouldn’t do anything different from the usual shallow copying, and we can

leave it out.

Rust has a special annotation called the Copy trait that we can place on
types that are stored on the stack, as integers are (we’ll talk more about
traits in Chapter 10). If a type implements the Copy trait, variables that
use it do not move, but rather are trivially copied, making them still valid

after assignment to another variable.

Rust won'’t let us annotate a type with Copy if the type, or any of its
parts, has implemented the Drop trait. If the type needs something special

to happen when the value goes out of scope and we add the Copy

annotation to that type, we’ll get a compile-time error. To learn about how
to add the Copy annotation to your type to implement the trait, see

Appendix C.

So, what types implement the Copy trait? You can check the
documentation for the given type to be sure, but as a general rule, any group
of simple scalar values can implement Copy , and nothing that requires
allocation or is some form of resource can implement Copy . Here are

some of the types that implement Copy :

e All the integer types, such as u32 .

e The Boolean type, bool , with values true and false.

o All the floating-point types, such as 64 .

e The character type, char .

e Tuples, if they only contain types that also implement Copy . For
example, (132, 132) implements Copy,but (132, String)

does not.
Ownership and Functions

The mechanics of passing a value to a function are similar to those when
assigning a value to a variable. Passing a variable to a function will move or
copy, just as assignment does. Listing 4-3 has an example with some

annotations showing where variables go into and out of scope.

src/main.rs

fn main() {

let s String::from("hello"); // s comes 1ii
takes_ownership(s); // s's value

// ... and s¢
let x = 5; // X comes 1ilI
makes_copy(Xx); // X would mc

// but 132 i
// use X afte

} // Here, x goes out of scope, then s. However,
// nothing special happens.

fn takes_ownership(some_string: String) { // some
println! ("{some_string}");
} // Here, some_string goes out of scope and “dr«
// memory is freed.

fn makes_copy(some_integer: 132) { // some_integs
println!("{some_integer}");
} // Here, some_integer goes out of scope. Nothit

4

Listing 4-3: Functions with ownership and scope annotated

If we tried to use s after the call to takes_ownership, Rust would
throw a compile-time error. These static checks protect us from mistakes.
Try adding code to main thatuses s and X to see where you can use

them and where the ownership rules prevent you from doing so.
Return Values and Scope

Returning values can also transfer ownership. Listing 4-4 shows an example
of a function that returns some value, with similar annotations as those in Li

sting 4-3.

src/main.rs

fn main() {

let s1 = gives_ownership(); // gives.
// value
let s2 = String::from("hello"); // s2 col
let s3 = takes_and_gives_back(s2); // s2 is
// takes.
// moves

} // Here, s3 goes out of scope and is dropped.
// happens. sl1 goes out of scope and is droppel

fn gives_ownership() -> String { // gives.
// returi
// that «

let some_string = String::from("yours"); // ¢
some_string //

/70
// 1

// This function takes a String and returns a St
fn takes_and_gives_back(a_string: String) -> Str:

a_string // a_string 1s returned and moves (

Listing 4-4: Transferring ownership of return values

The ownership of a variable follows the same pattern every time:
assigning a value to another variable moves it. When a variable that
includes data on the heap goes out of scope, the value will be cleaned up by

drop unless ownership of the data has been moved to another variable.

While this works, taking ownership and then returning ownership with

every function is a bit tedious. What if we want to let a function use a value

but not take ownership? It’s quite annoying that anything we pass in also

needs to be passed back if we want to use it again, in addition to any data
»

resulting from the body of the function that we might want to return as well.

Rust does let us return multiple values using a tuple, as shown in Listing

4-5.

src/main.rs

fn main() {
let s1 = String::from("hello");

let (s2, len) = calculate_length(sl);

println!("The length of '{s2}' is {len}.");
fn calculate_length(s: String) -> (String, usize

let length = s.len(); // len() returns the I¢

(s, length)

Listing 4-5: Returning ownership of parameters

But this is too much ceremony and a lot of work for a concept that should
be common. Luckily for us, Rust has a feature for using a value without

transferring ownership, called references.

References and Borrowing

The issue with the tuple code in Listing 4-5 is that we have to return the
String to the calling function so we can still use the String after the
call to calculate_length, because the String was moved into
calculate_length . Instead, we can provide a reference to the
String value. A reference is like a pointer in that it’s an address we can
follow to access the data stored at that address; that data is owned by some
other variable. Unlike a pointer, a reference is guaranteed to point to a valid

value of a particular type for the life of that reference.

Here is how you would define and use a calculate_length
function that has a reference to an object as a parameter instead of taking

ownership of the value:

src¢/main.rs

fn main() {
let s1 = String::from("hello");

let len = calculate_length(&s1);

println!("The length of '{s1}' is {len}.");

fn calculate_length(s: &String) -> usize {
s.len()

First, notice that all the tuple code in the variable declaration and the
function return value is gone. Second, note that we pass &s1 into
calculate_length and, in its definition, we take &String rather
than String . These ampersands represent references, and they allow you
to refer to some value without taking ownership of it. Figure 4-5 depicts

this concept.

s1

Figure 4-5: A diagram of &String s pointing at String si

name |value name |valve
ptr - pir
len 5
capacity| 5

index |value
0 h
| e
2 |
3 |
4 o

NOTE

The opposite of referencing by using & is dereferencing, which is

accomplished with the dereference operator, * . We’ll see some uses

of the dereference operator in Chapter 8 and discuss details of

dereferencing in Chapter 15.

Let’s take a closer look at the function call here:

let s1

let len

= calculate_length(&sl);

String::from("hello");

The &s1 syntax lets us create a reference that refers to the value of s1
but does not own it. Because it does not own it, the value it points to will

not be dropped when the reference stops being used.

Likewise, the signature of the function uses & to indicate that the type of

the parameter s is a reference. Let’s add some explanatory annotations:

fn calculate_length(s: &String) -> usize { // s
s.len()
} // Here, s goes out of scope. But because it d«
// it refers to, the String is not dropped.

The scope in which the variable s is valid is the same as any function
parameter’s scope, but the value pointed to by the reference is not dropped
when s stops being used, because s doesn’t have ownership. When
functions have references as parameters instead of the actual values, we
won’t need to return the values in order to give back ownership, because we

never had ownership.

We call the action of creating a reference borrowing. As in real life, if a
person owns something, you can borrow it from them. When you’re done,

you have to give it back. You don’t own it.

So, what happens if we try to modify something we’re borrowing? Try

the code in Listing 4-6. Spoiler alert: it doesn’t work!

src/main.rs

fn main() {
let s = String::from("hello");

change(&s);

fn change(some_string: &String) {
some_string.push_str(", world");

Listing 4-6: Attempting to modify a borrowed value

Here’s the error:

error[E0596]: cannot borrow "“*some_string as mut
--> src/main.rs:8:5
|
7 | fn change(some_string: &String) {
l\ e --- help: considel
reference: “&mut String’
8 | some_string.push_str(", world");

| ANNNANNNNANNANNANNNNNNNNNNNNNNNNNNAN " some St

the data it refers to cannot be borrowed as mutal

4

Just as variables are immutable by default, so are references. We’re not

allowed to modify something we have a reference to.

Mutable References

We can fix the code from Listing 4-6 to allow us to modify a borrowed

value with just a few small tweaks that use, instead, a mutable reference:

src¢/main.rs

fn main() {
let mut s = String::from("hello");

change(&mut s);

fn change(some_string: &mut String) {
some_string.push_str (", world");

First we change s to be mut . Then we create a mutable reference with
&mut s where we call the change function, and update the function
signature to accept a mutable reference with some_string: &mut
String . This makes it very clear that the change function will mutate

the value it borrows.

Mutable references have one big restriction: if you have a mutable
reference to a value, you can have no other references to that value. This

code that attempts to create two mutable references to s will fail:

src/main.rs

let mut s = String::from("hello");

let ri
let r2

&mut s,
&mut s;

println!("{r1}, {r23}");

Here’s the error:

error[E0499]: cannot borrow 's° as mutable more f
--> src/main.rs:5:14

|
4 | let r1 = &mut s;

e first mutable borrow occl
5 | let r2 = &mut s;

| ANAAAN second mutable borrow oce
6 |
7 | println!("{r1}, {r23}");

|

-- first borrow later used hel

4

This error says that this code is invalid because we cannot borrow s as
mutable more than once at a time. The first mutable borrow is in r1 and
must last until it’s used in the println! , but between the creation of that
mutable reference and its usage, we tried to create another mutable

reference in r2 that borrows the same dataas r1.

The restriction preventing multiple mutable references to the same data at
the same time allows for mutation but in a very controlled fashion. It’s
something that new Rustaceans struggle with because most languages let
you mutate whenever you’d like. The benefit of having this restriction is
that Rust can prevent data races at compile time. A data race is similar to a

race condition and happens when these three behaviors occur:

e Two or more pointers access the same data at the same time.
e At least one of the pointers is being used to write to the data.

e There’s no mechanism being used to synchronize access to the data.

Data races cause undefined behavior and can be difficult to diagnose and
fix when you’re trying to track them down at runtime; Rust prevents this

problem by refusing to compile code with data races!

As always, we can use curly brackets to create a new scope, allowing for

multiple mutable references, just not simultaneous ones:

let mut s = String::from("hello");

let r1 = &mut s;

} // r1l goes out of scope here, so we can make a

let

r2 = &mut s;

Rust enforces a similar rule for combining mutable and immutable

references. This code results in an error;

let

let
let
let

mut s = String::from("hello");

ri = &s; // no problem
r2 = &s; // no problem
r3 = &mut s; // BIG PROBLEM

println!("{r1}, {r2}, and {r3}");

Here’s the error:

error[E0502]: cannot borrow s’ as mutable becau:
--> src/main.rs:6:14

|
4 |

|
5 |
6 |

let r1 = &s; // no problem

-- immutable borrow occurs here
let r2 = &s; // no problem
let r3 = &mut s; // BIG PROBLEM

ANANAAN mutable borrow occurs hel

o

println!("{r1}, {r2}, and {r3}");
-- immutable borrow later usel

Whew! We also cannot have a mutable reference while we have an

immutable one to the same value.

Users of an immutable reference don’t expect the value to suddenly
change out from under them! However, multiple immutable references are
allowed because no one who is just reading the data has the ability to affect

anyone else’s reading of the data. b

Note that a reference’s scope starts from where it is introduced and
continues through the last time that reference is used. For instance, this
code will compile because the last usage of the immutable references, the

println! , occurs before the mutable reference is introduced:

let mut s = String::from("hello");

let r1 = &s; // no problem
let r2 = &s; // no problem
println!("{r1} and {r2}");
// Varilables rl1 and r2 will not be used after th:

let r3 = &mut s; // no problem
println! ("{r3}");

The scopes of the immutable references r1 and r2 end after the
println! where they are last used, which is before the mutable
reference r3 is created. These scopes don’t overlap, so this code is
allowed: the compiler can tell that the reference is no longer being used at a

point before the end of the scope.

Even though borrowing errors may be frustrating at times, remember that
it’s the Rust compiler pointing out a potential bug early (at compile time *
rather than at runtime) and showing you exactly where the problem is. Then

you don’t have to track down why your data isn’t what you thought it was.
Dangling References

In languages with pointers, it’s easy to erroneously create a dangling
pointer—a pointer that references a location in memory that may have been
given to someone else—by freeing some memory while preserving a
pointer to that memory. In Rust, by contrast, the compiler guarantees that
references will never be dangling references: if you have a reference to
some data, the compiler will ensure that the data will not go out of scope

before the reference to the data does.

Let’s try to create a dangling reference to see how Rust prevents them

with a compile-time error:

src¢/main.rs

fn main() {
let reference_to_nothing = dangle();

fn dangle() -> &String {
let s = String::from("hello");

&s

Here’s the error:

error[EO106]: missing lifetime specifier
--> src/main.rs:5:16
|
5 | fn dangle() -> &String {
| N expected named lifetime par:
|

help: this function's return type contalins a
but there is no value for it to be borrowed from
help: consider using the " 'static lifetime

|
5 | fn dangle() -> &'static String {

| A

This error message refers to a feature we haven’t covered yet: lifetimes.
We’ll discuss lifetimes in detail in Chapter 10. But, if you disregard the
parts about lifetimes, the message does contain the key to why this code is a

problem:

this function's return type contains a borrowed
1s no value for it to be borrowed from
»

>
Let’s take a closer look at exactly what’s happening at each stage of our

dangle code:

// src/main.rs
fn dangle() -> &String { // dangle returns a ref

let s = String::from("hello"); // s is a new
&s // we return a reference to the String, s

} // Here, s goes out of scope and is dropped, s«
// Danger!

Because s is created inside dangle , when the code of dangle is
finished, s will be deallocated. But we tried to return a reference to it.
That means this reference would be pointing to an invalid String . That’s

no good! Rust won’t let us do this.

The solution here is to return the String directly:

fn no_dangle() -> String {
let s = String::from("hello");

This works without any problems. Ownership is moved out, and nothing

is deallocated.

The Rules of References

Let’s recap what we’ve discussed about references:

e At any given time, you can have either one mutable reference or any
number of immutable references.

e References must always be valid.

Next, we’ll look at a different kind of reference: slices.

The Slice Type

Slices let you reference a contiguous sequence of elements in a collection
rather than the whole collection. A slice is a kind of reference, so it does not

have ownership.

Here’s a small programming problem: write a function that takes a string
of words separated by spaces and returns the first word it finds in that
string. If the function doesn’t find a space in the string, the whole string

must be one word, so the entire string should be returned.

Let’s work through how we’d write the signature of this function without

using slices, to understand the problem that slices will solve:
fn first_word(s: &String) -> ?

The first_word function has a parameter of type &String . We
don’t want ownership, so this is fine. But what should we return? We don’t
really have a way to talk about part of a string. However, we could return
the index of the end of the word, indicated by a space. Let’s try that, as

shown in Listing 4-7.

src/main.rs

fn first_word(s: &String) -> usize {
® let bytes s.as_bytes();

for (@®1i, &item) in ©® bytes.iter().enumerate(
O if item == b' ' {
return 1i;

©® s.len()

Listing 4-7: The first_word function that returns a byte index value

into the String parameter

Because we need to go through the String element by element and
check whether a value is a space, we’ll convert our String to an array of

bytes using the as_bytes method ©.

Next, we create an iterator over the array of bytes using the iter
method ©. We’ll discuss iterators in more detail in Chapter 13. For now,
know that iter isa method that returns each element in a collection and
that enumerate wraps the result of iter and returns each element as

part of a tuple instead. The first element of the tuple returned from

enumerate is the index, and the second element is a reference to the

element. This is a bit more convenient than calculating the index ourselves.

Because the enumerate method returns a tuple, we can use patterns to
destructure that tuple. We’ll be discussing patterns more in Chapter 6. In the
for loop, we specify a pattern that has 1 for the index in the tuple and
&item for the single byte in the tuple @. Because we get a reference to

the element from .iter().enumerate(), weuse & in the pattern.

Inside the for loop, we search for the byte that represents the space by
using the byte literal syntax @. If we find a space, we return the position.

Otherwise, we return the length of the string by using s.len() ©.

We now have a way to find out the index of the end of the first word in
the string, but there’s a problem. We’re returning a usize on its own, but
it’s only a meaningful number in the context of the &String . In other
words, because it’s a separate value from the String, there’s no
guarantee that it will still be valid in the future. Consider the program in Lis

ting 4-8 that uses the first_word function from Listing 4-7.

// src/main.rs
fn main() {
let mut s = String::from("hello world");

let word = first_word(&s); // word will get 1

s.clear(); // this empties the String, making

// word still has the value 5 here, but there
// we could meaningfully use the value 5 witl

Listing 4-8: Storing the result from calling the first_word function

and then changing the String contents

This program compiles without any errors and would also do so if we
used word after calling s.clear () .Because word isn’t connected to
the state of s atall, word still contains the value 5. We could use that |
value 5 with the variable s to try to extract the first word out, but this
would be a bug because the contents of s have changed since we saved 5

in word .

Having to worry about the index in word getting out of sync with the
data in s is tedious and error prone! Managing these indices is even more
brittle if we write a second_word function. Its signature would have to

look like this:

fn second_word(s: &String) -> (usize, usize) {

Now we’re tracking a starting and an ending index, and we have even
more values that were calculated from data in a particular state but aren’t
tied to that state at all. We have three unrelated variables floating around

that need to be kept in sync.
Luckily, Rust has a solution to this problem: string slices.

String Slices

A string slice is a reference to part of a String, and it looks like this:

let s = String::from("hello world");

let hello
let world

&s[0..5];
&s[6..11];

Rather than a reference to the entire String, hello is areference to
a portion of the String, specified in the extra [0..5] bit. We create
slices using a range within brackets by specifying
[starting_index..ending_index] , where starting_index is the first
position in the slice and ending_index is one more than the last position in
the slice. Internally, the slice data structure stores the starting position and
the length of the slice, which corresponds to ending_index minus

starting_index. So, in the case of let world = &s[6..11];,

world would be a slice that contains a pointer to the byte at index 6 of s

with a length value of 5.

Figure 4-6 shows this in a diagram.

s

name |value index|value

pir = O h

len 11] e

capacity| 11 2 |

3 |

world 4 o

name |value 5

ptr -l 6 w

len 5 7 o

8 r

9 |

10| d

Figure 4-6: String slice referring to part of a String

With Rust’s .. range syntax, if you want to start at index 0, you can

drop the value before the two periods. In other words, these are equal:

let s = String::from("hello");

&s[0..2];
&s[..2];

let slice
let slice

By the same token, if your slice includes the last byte of the String,

you can drop the trailing number. That means these are equal:

let s = String::from("hello");

let len = s.len();

let slice
let slice

&s[3..len];
&s[3..];

You can also drop both values to take a slice of the entire string. So these

are equal:

let s = String::from("hello");

let len = s.len();

let slice
let slice

&s[0..len];
&s[..1]1;

String slice range indices must occur at valid UTF-8 character
boundaries. If you attempt to create a string slice in the middle of a
multibyte character, your program will exit with an error. For the
purposes of introducing string slices, we are assuming ASCII only in
this section; a more thorough discussion of UTF-8 handling is in

“Storing UTF-8 Encoded Text with Strings” on page 147.

With all this information in mind, let’s rewrite first word to return

a slice. The type that signifies “string slice” is written as &Str :

src/main.rs

fn first_word(s: &String) -> &str {
let bytes = s.as_bytes();

for (i, &item) in bytes.iter().enumerate() {
if item == b' ' {
return &s[0..1i];

&s[..]

»

We get the index for the end of the word the same way we did in Listing
4-7, by looking for the first occurrence of a space. When we find a space,
we return a string slice using the start of the string and the index of the

space as the starting and ending indices.

Now when we call first_word, we get back a single value that is
tied to the underlying data. The value is made up of a reference to the

starting point of the slice and the number of elements in the slice.

Returning a slice would also work fora second_word function:

fn second_word(s: &String) -> &str {

We now have a straightforward API that’s much harder to mess up
because the compiler will ensure the references into the String remain
valid. Remember the bug in the program in Listing 4-8, when we got the
index to the end of the first word but then cleared the string so our index
was invalid? That code was logically incorrect but didn’t show any
immediate errors. The problems would show up later if we kept trying to

use the first word index with an emptied string. Slices make this bug

impossible and let us know we have a problem with our code much sooner.

Using the slice version of first_word will throw a compile-time error:

src¢/main.rs

fn main() {
let mut s = String::from("hello world");

let word = first_word(&s);

s.clear(); // error!

println!("the first word is: {word}");

Here’s the compiler error:

error[EO502]: cannot borrow 's° as mutable becau:
--> src/main.rs:18:5

16 let word = first_word(&s);
-- 1mmutable borr«
18 s.clear(); // error!

|
|
|

17 |
|
| ANNNANAAN mutable borrow occurs here
|

19

20 | println! ("the first word is: {word}");
| - --- 1mmut

Recall from the borrowing rules that if we have an immutable reference
to something, we cannot also take a mutable reference. Because clear
needs to truncate the String, it needs to get a mutable reference. The

println! afterthe call to clear uses the reference in word, so the
immutable reference must still be active at that point. Rust disallows the
mutable reference in clear and the immutable reference in word from
existing at the same time, and compilation fails. Not only has Rust made
our API easier to use, but it has also eliminated an entire class of errors at

compile time! :

String Literals as Slices

Recall that we talked about string literals being stored inside the binary.

Now that we know about slices, we can properly understand string literals:

let s = "Hello, world!";

The type of s hereis &Sstr :it’s a slice pointing to that specific point
of the binary. This is also why string literals are immutable; &Str is an

immutable reference.

String Slices as Parameters

Knowing that you can take slices of literals and String values leads us

to one more improvement on first_word, and that’s its signature:

fn first_word(s: &String) -> &str {

A more experienced Rustacean would write the signature shown in Listin
g 4-9 instead because it allows us to use the same function on both

&String values and &str values.

fn first_word(s: &str) -> &str {

Listing 4-9: Improving the first_word function by using a string slice

for the type of the s parameter

If we have a string slice, we can pass that directly. If we have a
String, we can pass a slice of the String or a reference to the
String . This flexibility takes advantage of deref coercions, a feature we

will cover in “Implicit Deref Coercions with Functions and Methods” on

page 325.

Defining a function to take a string slice instead of a reference to a
String makes our API more general and useful without losing any

functionality:

src/main.rs

fn main() {
let my_string = String::from("hello world");

// “first_word works on slices of "String's,
// or whole.

let word = first_word(&my_string[0..6]);

let word = first_word(&my_string[..]);

// “first_word also works on references to
// are equivalent to whole slices of "String
let word = first_word(&my_string);

let my_string_literal = "hello world";

// “first_word works on slices of string 1if
// whether partial or whole.

let word = first_word(&my_string_literal[0. .t
let word = first_word(&my_string_literal[..]
// Because string literals *are* string slict
// this works too, without the slice syntax!
let word = first_word(my_string_literal);

Other Slices

String slices, as you might imagine, are specific to strings. But there’s a

more general slice type too. Consider this array:
let a = [1, 2, 3, 4, 5];

Just as we might want to refer to part of a string, we might want to refer

to part of an array. We’d do so like this:

let a = [1/ 2/ 3/ 4/ 5]/
let slice = &a[1..3];

assert_eq!(slice, &[2, 3]);

This slice has the type &[132] . It works the same way as string slices
do, by storing a reference to the first element and a length. You’ll use this
kind of slice for all sorts of other collections. We’ll discuss these collections

in detail when we talk about vectors in Chapter 8.

Summary

The concepts of ownership, borrowing, and slices ensure memory safety in

Rust programs at compile time. The Rust language gives you control over

your memory usage in the same way as other systems’ programming
languages, but having the owner of data automatically clean up that data
when the owner goes out of scope means you don’t have to write and debug

extra code to get this control.

Ownership affects how lots of other parts of Rust work, so we’ll talk
about these concepts further throughout the rest of the book. Let’s move on

to Chapter 5 and look at grouping pieces of data togetherina struct .

OceanofPDF.com

https://oceanofpdf.com/

O
USING STRUCTS TO
STRUCTURE RELATED DATA

A struct, or structure, is a custom data type that lets you

package together and name multiple related values that
make up a meaningful group. If you’re familiar with an

/ object-oriented language, a struct is like an object’s data
attributes. In this chapter, we’ll compare and contrast tuples
with structs to build on what you already know and

demonstrate when structs are a better way to group data.

We’ll demonstrate how to define and instantiate structs. We’ll discuss
how to define associated functions, especially the kind of associated
functions called methods, to specify behavior associated with a struct type.
Structs and enums (discussed in Chapter 6) are the building blocks for
creating new types in your program’s domain to take full advantage of

Rust’s compile-time type checking.

Defining and Instantiating Structs

Structs are similar to tuples, discussed in “The Tuple Type” on page 40, in

that both hold multiple related values. Like tuples, the pieces of a struct can

be different types. Unlike with tuples, in a struct you’ll name each piece of
data so it’s clear what the values mean. Adding these names means that
structs are more flexible than tuples: you don’t have to rely on the order of

the data to specify or access the values of an instance.

To define a struct, we enter the keyword struct and name the entire
struct. A struct’s name should describe the significance of the pieces of data
being grouped together. Then, inside curly brackets, we define the names
and types of the pieces of data, which we call fields. For example, Listing 5-

1 shows a struct that stores information about a user account.

src/main.rs

struct User {
active: bool,
username: String,
email: String,
sign_1in_count: u64,

Listing 5-1: A User struct definition

To use a struct after we’ve defined it, we create an instance of that struct
by specifying concrete values for each of the fields. We create an instance

by stating the name of the struct and then add curly brackets containing

key: value pairs, where the keys are the names of the fields and the values
are the data we want to store in those fields. We don’t have to specify the
fields in the same order in which we declared them in the struct. In other
words, the struct definition is like a general template for the type, and
instances fill in that template with particular data to create values of the

type. For example, we can declare a particular user as shown in Listing 5-2.

src/main.rs

fn main() {
let userl = User {
active: true,
username: String::from('"someusernamel23"
email: String::from("someone@example.com'
sign_in_count: 1,

Listing 5-2: Creating an instance of the User struct

To get a specific value from a struct, we use dot notation. For example, to
access this user’s email address, we use useril.email . If the instance is
mutable, we can change a value by using the dot notation and assigning into
a particular field. Listing 5-3 shows how to change the value in the email

field of a mutable User instance.

src/main.rs

fn main() {
let mut userl = User {
active: true,
username: String::from('"someusernamel23"
emall: String::from('"someone@example.com'
sign_in_count: 1,

Irr

userl.email = String::from("anotheremail@exar

Listing 5-3: Changing the value in the email field ofa User instance

Note that the entire instance must be mutable; Rust doesn’t allow us to
mark only certain fields as mutable. As with any expression, we can
construct a new instance of the struct as the last expression in the function

body to implicitly return that new instance.

Listing 5-4 shows a build_user function that returns a User
instance with the given email and username. The active field gets the

value of true,andthe sign_in_count gets a value of 1.

fn build_user(email: String, username: String) -:
User {
active: true,
username: username,
email: email,
sign_in_count: 1,

Listing 5-4: A build_user function that takes an email and username

and returns a User instance

It makes sense to name the function parameters with the same name as
the struct fields, but having to repeat the email and username field
names and variables is a bit tedious. If the struct had more fields, repeating
each name would get even more annoying. Luckily, there’s a convenient

shorthand!
Using the Field Init Shorthand

Because the parameter names and the struct field names are exactly the
same in Listing 5-4, we can use the field init shorthand syntax to rewrite
build_user so it behaves exactly the same but doesn’t have the

repetition of username and email , as shown in Listing 5-5.

fn build_user(email: String, username: String) -:
User {
active: true,
username,
email,
sign_in_count: 1,

Listing 5-5: A build_user function that uses field init shorthand
because the username and email parameters have the same name as

struct fields

Here, we’re creating a new instance of the User struct, which has a
field named email . We want to set the email field’s value to the value
inthe email parameter of the build_user function. Because the

email field and the email parameter have the same name, we only

need to write emaill rather than email: email.

Creating Instances from Other Instances with Struct Update

Syntax

It’s often useful to create a new instance of a struct that includes most of the
values from another instance, but changes some. You can do this using

struct update syntax.

First, in Listing 5-6 we show how to create a new User instance in
user2 regularly, without the update syntax. We set a new value for
emall but otherwise use the same values from userl that we created

in Listing 5-2.

src¢/main.rs

fn main() {
--sSnip- -

let user2 = User {
active: userl.active,
username: userl.username,
email: String::from("another@example.com'
sign_in_count: userl.sign_in_count,

L

Listing 5-6: Creating a new User instance using one of the values from

useri

Using struct update syntax, we can achieve the same effect with less
code, as shown in Listing 5-7. The syntax .. specifies that the remaining
fields not explicitly set should have the same value as the fields in the given

instance.

src/main.rs

fn main() {
--snip- -

let user2 = User {
email: String::from("another@example.com'
..userl

+s

Listing 5-7: Using struct update syntax to set a new email value for a

User instance but to use the rest of the values from user1l

The code in Listing 5-7 also creates an instance in user2 that has a
different value for email but has the same values for the username ,
active,and sign_in_count fields from userl.The ..userl
must come last to specify that any remaining fields should get their values
from the corresponding fields in userl , but we can choose to specify
values for as many fields as we want in any order, regardless of the order of

the fields in the struct’s definition.

Note that the struct update syntax uses = like an assignment; this is

because it moves the data, just as we saw in “Variables and Data Interacting

with Move” on page 64. In this example, we can no longer use useril
after creating user2 because the String inthe username field of
userl was moved into user2 . If we had given user2 new
String values for both email and username, and thus only used
the active and sign_in_count values from userl, then
userl would still be valid after creating user2 . Both active and
sign_in_count are types that implement the Copy trait, so the

behavior we discussed in “Stack-Only Data: Copy” on page 68 would

apply.

Using Tuple Structs Without Named Fields to Create Different
Types

Rust also supports structs that look similar to tuples, called tuple structs.
Tuple structs have the added meaning the struct name provides but don’t
have names associated with their fields; rather, they just have the types of
the fields. Tuple structs are useful when you want to give the whole tuple a
name and make the tuple a different type from other tuples, and when

naming each field as in a regular struct would be verbose or redundant.

To define a tuple struct, start with the struct keyword and the struct
name followed by the types in the tuple. For example, here we define and

use two tuple structs named Color and Point :

src/main.rs

struct Color(i32, i32, 1i32);
struct Point(i32, 132, 1i32);

fn main() {
let black = Color(0, 0, 0);
let origin = Point(0, 0, 0);

Note that the black and origin values are different types because
they’re instances of different tuple structs. Each struct you define is its own
type, even though the fields within the struct might have the same types.
For example, a function that takes a parameter of type Color cannot take
a Point as an argument, even though both types are made up of three

132 values. Otherwise, tuple struct instances are similar to tuples in that
you can destructure them into their individual pieces, and you can use a .

followed by the index to access an individual value.
Unit-Like Structs Without Any Fields

You can also define structs that don’t have any fields! These are called unit-
like structs because they behave similarly to () , the unit type that we
mentioned in “The Tuple Type” on page 40. Unit-like structs can be useful
when you need to implement a trait on some type but don’t have any data

that you want to store in the type itself. We’ll discuss traits in Chapter 10.

Here’s an example of declaring and instantiating a unit struct named

AlwaysEqual :

src¢/main.rs

struct AlwaysEqual;

fn main() {
let subject = AlwaysEqual;

To define AlwaysEqual , we use the struct keyword, the name we
want, and then a semicolon. No need for curly brackets or parentheses!
Then we can get an instance of AlwaysEqual inthe subject
variable in a similar way: using the name we defined, without any curly
brackets or parentheses. Imagine that later we’ll implement behavior for
this type such that every instance of AlwaysEqual is always equal to
every instance of any other type, perhaps to have a known result for testing
purposes. We wouldn’t need any data to implement that behavior! You’ll
see in Chapter 10 how to define traits and implement them on any type,

including unit-like structs.

OWNERSHIP OF STRUCT DATA

In the User struct definition in Listing 5-1, we used the owned String type rather than the
&str string slice type. This is a deliberate choice because we want each instance of this struct

to own all of its data and for that data to be valid for as long as the entire struct is valid.

It’s also possible for structs to store references to data owned by something else, but to do so
requires the use of lifetimes, a Rust feature that we’ll discuss in Chapter 10. Lifetimes ensure
that the data referenced by a struct is valid for as long as the struct is. Let’s say you try to store a
reference in a struct without specifying lifetimes, like the following in src/main.rs; this won’t

work:

struct User {
active: bool,
username: &str,
email: &str,
sign_in_count: u64,

fn main() {
let userl = User {
active: true,
username: "someusernamel23",
email: "someone@example.com",
sign_in_count: 1,

1

The compiler will complain that it needs lifetime specifiers:

$ cargo run
Compiling structs v0.1.0 (file:///projects/structs)
error[E0106]: missing lifetime specifier
--> src/main.rs:3:15

3 | username: &str,
| N expected named lifetime parameter

help: consider introducing a named lifetime parameter

1 ~ struct User<'a> {
2 | active: bool,
3 ~ username: &'a str,

error[E0106]: missing lifetime specifier
--> src/main.rs:4:12

4 email: &str,

|
|
| N expected named lifetime parameter
|
help: consider introducing a named lifetime parameter
|

1 ~ struct User<'a> {
2 | active: bool,
3 | username: &str,
4 — email: &'a str,

In Chapter 10, we’ll discuss how to fix these errors so you can store references in structs, but
for now, we’ll fix errors like these using owned types like String instead of references like

&str.

An Example Program Using Structs

To understand when we might want to use structs, let’s write a program that

calculates the area of a rectangle. We’ll start by using single variables, and

then refactor the program until we’re using structs instead.

Let’s make a new binary project with Cargo called rectangles that will
take the width and height of a rectangle specified in pixels and calculate the
area of the rectangle. Listing 5-8 shows a short program with one way of

doing exactly that in our project’s src/main.rs.

src/main.rs

fn main() {
let widthl = 30;
let heightl = 50;

println!(
"The area of the rectangle is {} square |
area(widthl1, heightl)

i

fn area(width: u32, height: u32) -> u32 {
width * height

Listing 5-8: Calculating the area of a rectangle specified by separate width

and height variables

Now, run this program using cargo run:

The area of the rectangle is 1500 square pixels.

4

This code succeeds in figuring out the area of the rectangle by calling the
area function with each dimension, but we can do more to make this

code clear and readable.

The issue with this code is evident in the signature of area :

fn area(width: u32, height: u32) -> u32 {

The area function is supposed to calculate the area of one rectangle,
but the function we wrote has two parameters, and it’s not clear anywhere
in our program that the parameters are related. It would be more readable
and more manageable to group width and height together. We’ve already
discussed one way we might do that in “The Tuple Type” on page 40: by

using tuples.
Refactoring with Tuples

Listing 5-9 shows another version of our program that uses tuples.

src/main.rs

fn main() {
let rectl = (30, 50);

println!(
"The area of the rectangle is {} square |
® area(rectl)

I

fn area(dimensions: (u32, u32)) -> u32 {
® dimensions.0® * dimensions.1

Listing 5-9: Specifying the width and height of the rectangle with a tuple

In one way, this program is better. Tuples let us add a bit of structure, and
we’re now passing just one argument @. But in another way, this version is
less clear: tuples don’t name their elements, so we have to index into the

parts of the tuple @, making our calculation less obvious.

Mixing up the width and height wouldn’t matter for the area calculation,
but if we want to draw the rectangle on the screen, it would matter! We
would have to keep in mind that width is the tuple index © and

height is the tuple index 1 . This would be even harder for someone

else to figure out and keep in mind if they were to use our code. Because we

haven’t conveyed the meaning of our data in our code, it’s now easier to

introduce errors.
Refactoring with Structs: Adding More Meaning

We use structs to add meaning by labeling the data. We can transform the
tuple we’re using into a struct with a name for the whole as well as names

for the parts, as shown in Listing 5-10.

src/main.rs

©® struct Rectangle {
® width: u32,
height: u32,

fn main() {
©® let rectl = Rectangle {

width: 30,
height: 50,
3
println!(

"The area of the rectangle is {} square |
area(&rectl)

I

® fn area(rectangle: &Rectangle) -> u32 {
©® rectangle.width * rectangle.height

}

Listing 5-10: Defining a Rectangle struct

Here, we’ve defined a struct and named it Rectangle @. Inside the
curly brackets, we defined the fields as width and height , both of
which have type u32 @. Then, in main, we created a particular instance

of Rectangle that has a width of 30 and a height of 50 ©.

Our area function is now defined with one parameter, which we’ve
named rectangle, whose type is an immutable borrow of a struct
Rectangle instance @. As mentioned in Chapter 4, we want to borrow
the struct rather than take ownership of it. This way, main retains its
ownership and can continue using rectl, which is the reason we use the

& in the function signature and where we call the function.

The area function accesses the width and height fields of the
Rectangle instance © (note that accessing fields of a borrowed struct }
instance does not move the field values, which is why you often see
borrows of structs). Our function signature for area now says exactly
what we mean: calculate the area of Rectangle, using its width and

height fields. This conveys that the width and height are related to each

other, and it gives descriptive names to the values rather than using the

tuple index values of @ and 1 . This is a win for clarity.
Adding Useful Functionality with Derived Traits

It’d be useful to be able to print an instance of Rectangle while we’re
debugging our program and see the values for all its fields. Listing 5-11
tries using the println! macro as we have used in previous chapters.

This won’t work, however.

src/main.rs

struct Rectangle {
width: u32,
height: u32,

fn main() {
let rectl = Rectangle {
width: 30,
height: 50,
i

println!("rectl is {}", rectl);

Listing 5-11: Attempting to printa Rectangle instance

When we compile this code, we get an error with this core message:

error[EO277]: "Rectangle doesn't implement “std

4

The println! macro can do many kinds of formatting, and by

default, the curly brackets tell println! to use formatting known as

Display : output intended for direct end user consumption. The primitive
types we’ve seen so far implement Display by default because there’s
only one way you’d want to show a 1 or any other primitive type to a user.
But with structs, the way println! should format the output is less clear
because there are more display possibilities: Do you want commas or not?
Do you want to print the curly brackets? Should all the fields be shown?
Due to this ambiguity, Rust doesn’t try to guess what we want, and structs
don’t have a provided implementation of Display to use with

println! andthe {} placeholder.

If we continue reading the errors, we’ll find this helpful note:

= help: the trait “std::fmt::Display is not imp.
= note: in format strings you may be able to use

»

Let’s try it! The println! macro call will now look like println!
("rectl is {:?}", rectl); . Putting the specifier :? inside the
curly brackets tells println! we want to use an output format called

Debug . The Debug trait enables us to print our struct in a way that is

useful for developers so we can see its value while we’re debugging our

code.

Compile the code with this change. Drat! We still get an error:

error[EO277]: "Rectangle doesn't implement "Debt

»

But again, the compiler gives us a helpful note:

help: the trait "Debug is not implemented for
note: add “#[derive(Debug)] or manually impler

4

Rust does include functionality to print out debugging information, but
we have to explicitly opt in to make that functionality available for our
struct. To do that, we add the outer attribute #[derive(Debug)] just

before the struct definition, as shown in Listing 5-12.

src¢/main.rs

#[derive(Debug)]
struct Rectangle {
width: u32,

height: u32,

fn main() {
let rectl = Rectangle {
width: 30,
height: 50,
i

println!("rectl is {:?}", rectl);

Listing 5-12: Adding the attribute to derive the Debug trait and printing

the Rectangle instance using debug formatting

Now when we run the program, we won’t get any errors, and we’ll see

the following output:

rectl is Rectangle { width: 30, height: 50 }

Nice! It’s not the prettiest output, but it shows the values of all the fields
for this instance, which would definitely help during debugging. When we

have larger structs, it’s useful to have output that’s a bit easier to read; in

those cases, we can use {:#?} instead of {:?} inthe println!

string. In this example, using the {:#7?} style will output the following:

rectl is Rectangle {
width: 30,
height: 50,

Another way to print out a value using the Debug format is to use the
dbg! macro, which takes ownership of an expression (as opposed to
println! , which takes a reference), prints the file and line number of

where that dbg! macro call occurs in your code along with the resultant

value of that expression, and returns ownership of the value.

NOTE

Calling the dbg! macro prints to the standard error console
stream (stderr), as opposedto println! , which prints to the
standard output console stream (stdout). We’ll talk more about
stderr and stdout in “Writing Error Messages to Standard

Error Instead of Standard Output” on page 270.

Here’s an example where we’re interested in the value that gets assigned

to the width field, as well as the value of the whole structin rectl:

src¢/main.rs

#[derive(Debug)]
struct Rectangle {
width: u32,

height: u32,

fn main() {

let scale 2;
let rectl Rectangle {
® width: dbg! (30 * scale),
height: 50,

b o

® dbg!(&rectl);
3

We can put dbg! around the expression 30 * scale @ and,
because dbg! returns ownership of the expression’s value, the width
field will get the same value as if we didn’t have the dbg! call there. We

don’t want dbg! to take ownership of rectl, so we use a reference to

rectl in the next call @. Here’s what the output of this example looks
like:

[src/main.rs:10] 30 * scale = 60
[src/main.rs:14] &rectl = Rectangle {
width: 60,
height: 50,

We can see the first bit of output came from @ where we’re debugging
the expression 30 * scale, and its resultant value is 60 (the Debug
formatting implemented for integers is to print only their value). The

dbg! call at ® outputs the value of &rectl, which is the
Rectangle struct. This output uses the pretty Debug formatting of the
Rectangle type. The dbg! macro can be really helpful when you’re

trying to figure out what your code is doing!

In addition to the Debug trait, Rust has provided a number of traits for
us to use with the derive attribute that can add useful behavior to our
custom types. Those traits and their behaviors are listed in Appendix C.
We’ll cover how to implement these traits with custom behavior as well as
how to create your own traits in Chapter 10. There are also many attributes
other than derive ; for more information, see the “Attributes” section of

the Rust Reference at https://doc.rust-lang.org/reference/attributes.html.

https://doc.rust-lang.org/reference/attributes.html

Our area function is very specific: it only computes the area of
rectangles. It would be helpful to tie this behavior more closely to our
Rectangle struct because it won’t work with any other type. Let’s look
at how we can continue to refactor this code by turning the area function

into an area method defined on our Rectangle type.

Method Syntax

Methods are similar to functions: we declare them with the fn keyword
and a name, they can have parameters and a return value, and they contain
some code that’s run when the method is called from somewhere else.
Unlike functions, methods are defined within the context of a struct (or an
enum or a trait object, which we cover in Chapter 6 and Chapter 17,
respectively), and their first parameter is always self , which represents

the instance of the struct the method is being called on.
Defining Methods

Let’s change the area function that hasa Rectangle instance as a
parameter and instead make an area method defined on the

Rectangle struct, as shown in Listing 5-13.

src/main.rs

#[derive(Debug)]
struct Rectangle {
width: u32,

height: u32,

©® impl Rectangle {
® fn area(&self) -> u32 {
self.width * self.height

fn main() {
let rectl = Rectangle {

width: 30,
height: 50,
3
println!(

"The area of the rectangle 1is {} square |
© rectl.area()

),

Listing 5-13: Defining an area method on the Rectangle struct

To define the function within the context of Rectangle, we start an
impl (implementation) block for Rectangle @. Everything within
this impl block will be associated with the Rectangle type. Then we
move the area function within the impl curly brackets ® and change
the first (and in this case, only) parameter to be self in the signature and
everywhere within the body. In main, where we called the area
function and passed rectl as an argument, we can instead use method
syntax to call the area method on our Rectangle instance ©. The
method syntax goes after an instance: we add a dot followed by the method

name, parentheses, and any arguments.

In the signature for area, we use &self instead of rectangle:
&Rectangle . The &self is actually short for self: &Self.
Within an impl block, the type Self is an alias for the type that the

impl block is for. Methods must have a parameter named self of type
Self for their first parameter, so Rust lets you abbreviate this with only
the name self in the first parameter spot. Note that we still need to use
the & in front of the self shorthand to indicate that this method borrows
the Self instance, just as we did in rectangle: &Rectangle.
Methods can take ownership of self , borrow self immutably, as
we’ve done here, or borrow self mutably, just as they can any other

parameter.

We chose &self here for the same reason we used &Rectangle in

the function version: we don’t want to take ownership, and we just want to

read the data in the struct, not write to it. If we wanted to change the
instance that we’ve called the method on as part of what the method does,
we’d use &mut self as the first parameter. Having a method that takes
ownership of the instance by using just self as the first parameter is rare;
this technique is usually used when the method transforms self into
something else and you want to prevent the caller from using the original

instance after the transformation.

The main reason for using methods instead of functions, in addition to
providing method syntax and not having to repeat the type of self in
every method’s signature, is for organization. We’ve put all the things we
can do with an instance of a type in one impl block rather than making
future users of our code search for capabilities of Rectangle in various

places in the library we provide.

Note that we can choose to give a method the same name as one of the
struct’s fields. For example, we can define a method on Rectangle that

is also named width :

src/main.rs

impl Rectangle {
fn width(&self) -> bool {
self.width > 0

fn main() {
let rectl = Rectangle {
width: 30,
height: 50,
i

if rectl.width() {
println!(
"The rectangle has a nonzero width;
rectl.width

)7

Here, we’re choosing to make the width method return true if the
value in the instance’s width field is greater than ® and false if the
value is O : we can use a field within a method of the same name for any
purpose. In main, when we follow rectl.width with parentheses,

»

Rust knows we mean the method width . When we don’t use parentheses,

Rust knows we mean the field width.

Often, but not always, when we give methods with the same name as a
field we want it to only return the value in the field and do nothing else.

Methods like this are called getters, and Rust does not implement them

automatically for struct fields as some other languages do. Getters are
useful because you can make the field private but the method public, and
thus enable read-only access to that field as part of the type’s public API.
We will discuss what public and private are and how to designate a field or

method as public or private in Chapter 7.

WHERE'’S THE -> OPERATOR?

In C and C++, two different operators are used for calling methods: you use . if you’re calling
a method on the object directly and -> if you’re calling the method on a pointer to the object
and need to dereference the pointer first. In other words, if object is a pointer, object -

> something () issimilarto (*object). something () .

Rust doesn’t have an equivalent to the -> operator; instead, Rust has a feature called
automatic referencing and dereferencing. Calling methods is one of the few places in Rust that

has this behavior.

Here’s how it works: when you call a method with object. something () , Rust
automatically adds in &, &mut ,or * so object matches the signature of the method. In

other words, the following are the same:

pl.distance(&p2);
(&p1l) .distance(&p2);

The first one looks much cleaner. This automatic referencing behavior works because
methods have a clear receiver—the type of self . Given the receiver and name of a method,
Rust can figure out definitively whether the method is reading (&self), mutating (&mut
self), or consuming (Self). The fact that Rust makes borrowing implicit for method

receivers is a big part of making ownership ergonomic in practice.

Methods with More Parameters

Let’s practice using methods by implementing a second method on the
Rectangle struct. This time we want an instance of Rectangle to
take another instance of Rectangle and return true if the second
Rectangle can fit completely within self (the first Rectangle);
otherwise, it should return false . That is, once we’ve defined the
can_hold method, we want to be able to write the program shown in Lis

ting 5-14.

src/main.rs

fn main() {
let rectl = Rectangle {

width: 30,
height: 50,

¥

let rect2 = Rectangle {
width: 10,
height: 40,

¥

let rect3 = Rectangle {
width: 60,
height: 45,

+s

println!("Can rectl hold rect2? {}", rectl.c:
println!("Can rectl hold rect3? {}", rectl.c:

Listing 5-14: Using the as-yet-unwritten can_hold method

The expected output would look like the following because both
dimensions of rect2 are smaller than the dimensions of rectil, but

rect3 is wider than rectil:

Can rectl hold rect2? true
Can rectl hold rect3? false

We know we want to define a method, so it will be within the impl
Rectangle block. The method name will be can_hold, and it will
take an immutable borrow of another Rectangle as a parameter. We can
tell what the type of the parameter will be by looking at the code that calls
the method: rectl.can_hold(&rect2) passesin &rect2, which }
is an immutable borrow to rect2, an instance of Rectangle . This
makes sense because we only need to read rect2 (rather than write,
which would mean we’d need a mutable borrow), and we want main to
retain ownership of rect2 so we can use it again after calling the

can_hold method. The return value of can_hold will be a Boolean,

and the implementation will check whether the width and height of self

are greater than the width and height of the other Rectangle,
respectively. Let’s add the new can_hold method to the impl block

from Listing 5-13, shown in Listing 5-15.

src/main.rs

impl Rectangle {
fn area(&self) -> u32 {
self.width * self.height

fn can_hold(&self, other: &Rectangle) -> boo.
self.width > other.width && self.height :

Listing 5-15: Implementing the can_hold method on Rectangle that

takes another Rectangle instance as a parameter

When we run this code with the main function in Listing 5-14, we’ll
get our desired output. Methods can take multiple parameters that we add to
the signature after the self parameter, and those parameters work just

like parameters in functions.

Associated Functions

All functions defined within an impl block are called associated
functions because they’re associated with the type named after the impl .
We can define associated functions that don’t have self as their first
parameter (and thus are not methods) because they don’t need an instance
of the type to work with. We’ve already used one function like this: the

String::from function that’s defined on the String type.

Associated functions that aren’t methods are often used for constructors
that will return a new instance of the struct. These are often called new,
but New isn’t a special name and isn’t built into the language. For
example, we could choose to provide an associated function named

square that would have one dimension parameter and use that as both
width and height, thus making it easier to create a square Rectangle

rather than having to specify the same value twice:

src/main.rs

impl Rectangle {
fn square(size: u32) ->© Self ({
® Self ({
width: size,
height: size,

The Self keywords in the return type @ and in the body of the
function @ are aliases for the type that appears after the impl keyword,

which in this case is Rectangle .

To call this associated function, we use the :: syntax with the struct
name; let sq = Rectangle::square(3); isanexample. This
function is namespaced by the struct: the :: syntax is used for both
associated functions and namespaces created by modules. We’ll discuss

modules in Chapter 7.
Multiple impl Blocks

Each struct is allowed to have multiple impl blocks. For example, Listing
5-15 is equivalent to the code shown in Listing 5-16, which has each

method in its own impl block.

impl Rectangle {
fn area(&self) -> u32 {
self.width * self.height

impl Rectangle {

fn can_hold(&self, other: &Rectangle) -> boo.
self.width > other.width && self.height :

Listing 5-16: Rewriting Listing 5-15 using multiple impl blocks

There’s no reason to separate these methods into multiple impl blocks
here, but this is valid syntax. We’ll see a case in which multiple impl

blocks are useful in Chapter 10, where we discuss generic types and traits.

Summary >

Structs let you create custom types that are meaningful for your domain. By
using structs, you can keep associated pieces of data connected to each
other and name each piece to make your code clear. In impl blocks, you
can define functions that are associated with your type, and methods are a
kind of associated function that let you specify the behavior that instances

of your structs have.

But structs aren’t the only way you can create custom types: let’s turn to

Rust’s enum feature to add another tool to your toolbox.

OceanofPDF.com

https://oceanofpdf.com/

6
ENUMS AND PATTERN
MATCHING

In this chapter, we’ll look at enumerations, also referred to
as enums. Enums allow you to define a type by enumerating
its possible variants. First we’ll define and use an enum to

7 show how an enum can encode meaning along with data.

Next, we’ll explore a particularly useful enum, called

Option, which expresses that a value can be either
something or nothing. Then we’ll look at how pattern matching in the
match expression makes it easy to run different code for different values
of an enum. Finally, we’ll cover how the if let construct is another

convenient and concise idiom available to handle enums in your code.

Defining an Enum

Where structs give you a way of grouping together related fields and data,
like a Rectangle withits width and height , enums give you a
way of saying a value is one of a possible set of values. For example, we
may want to say that Rectangle is one of a set of possible shapes that
also includes Circle and Triangle . To do this, Rust allows us to

encode these possibilities as an enum.

Let’s look at a situation we might want to express in code and see why
enums are useful and more appropriate than structs in this case. Say we
need to work with IP addresses. Currently, two major standards are used for
[P addresses: version four and version six. Because these are the only
possibilities for an IP address that our program will come across, we can

enumerate all possible variants, which is where enumeration gets its name.

Any IP address can be either a version four or a version six address, but
not both at the same time. That property of IP addresses makes the enum
data structure appropriate because an enum value can only be one of its
variants. Both version four and version six addresses are still fundamentally
IP addresses, so they should be treated as the same type when the code is

handling situations that apply to any kind of IP address.

We can express this concept in code by defining an IpAddrKind
enumeration and listing the possible kinds an IP address can be, V4 and

V6 . These are the variants of the enum:

enum IpAddrKind {
V4,
V6,

IpAddrKind is now a custom data type that we can use elsewhere in

our code.

Enum Values

We can create instances of each of the two variants of IpAddrKind like

this:

let four = IpAddrKind: :V4;
let six = IpAddrKind::V6;

Note that the variants of the enum are namespaced under its identifier,
and we use a double colon to separate the two. This is useful because now
both values IpAddrKind: :V4 and IpAddrKind: :V6 are of the
same type: IpAddrKind . We can then, for instance, define a function

that takes any IpAddrKind :

fn route(ip_kind: IpAddrKind) {}

And we can call this function with either variant:

route(IpAddrKind: :Vv4);
route(IpAddrKind: :V6);

Using enums has even more advantages. Thinking more about our IP
address type, at the moment we don’t have a way to store the actual IP

address data; we only know what kind it is. Given that you just learned

about structs in Chapter 5, you might be tempted to tackle this problem with

structs as shown in Listing 6-1.

® enum IpAddrKind {
V4,
V6,

® struct IpAddr {
© kind: IpAddrKind,
® address: String,

}

©® let home = IpAddr {
kind: IpAddrKind::V4,
address: String::from("127.0.0.1"),
Fi

® let loopback = IpAddr {
kind: IpAddrKind::V6,
address: String::from("::1"),

+i

Listing 6-1: Storing the data and IpAddrKind variant of an IP address

usinga Sstruct

Here, we’ve defined a struct IpAddr @ that has two fields: a kind
field © that is of type IpAddrKind (the enum we defined previously @)
and an address field @ of type String . We have two instances of
this struct. The firstis home ©, and it has the value IpAddrKind: :V4
as its kind with associated address data of 127 .0.0.1 . The second
instance is 1oopback @. It has the other variant of IpAddrKind as its

kind value, V6, and has address ::1 associated with it. We’ve used a
struct to bundle the kind and address values together, so now the

variant is associated with the value.

However, representing the same concept using just an enum is more
concise: rather than an enum inside a struct, we can put data directly into
each enum variant. This new definition of the IpAddr enum says that

both V4 and V6 variants will have associated String values:

enum IpAddr {
V4(String),
V6(String),

let home = IpAddr::V4(String::from("127.0.0.1"))

let loopback = IpAddr::V6(String::from("::1"));

We attach data to each variant of the enum directly, so there is no need
for an extra struct. Here, it’s also easier to see another detail of how enums
work: the name of each enum variant that we define also becomes a
function that constructs an instance of the enum. That is,

IpAddr: :V4() isa function call that takes a String argument and
returns an instance of the IpAddr type. We automatically get this

constructor function defined as a result of defining the enum.

There’s another advantage to using an enum rather than a struct: each
variant can have different types and amounts of associated data. Version
four IP addresses will always have four numeric components that will have
values between 0 and 255. If we wanted to store V4 addresses as four u8
values but still express V6 addresses as one String value, we wouldn’t

be able to with a struct. Enums handle this case with ease:

enum IpAddr {
V4(u8, u8, u8, u8),
V6(String),

let home = IpAddr::v4(127, 0, 0, 1);

let loopback = IpAddr::V6(String::from("::1"));

We’ve shown several different ways to define data structures to store
version four and version six IP addresses. However, as it turns out, wanting
to store IP addresses and encode which kind they are is so common that the
standard library has a definition we can use! Let’s look at how the standard
library defines IpAddr : it has the exact enum and variants that we’ve
defined and used, but it embeds the address data inside the variants in the

form of two different structs, which are defined differently for each variant:

struct Ipv4Addr {

--snip--

struct Ipv6Addr {

--snip--

}

enum IpAddr {
V4(Ipv4Addr),
V6 (Ipv6Addr),

This code illustrates that you can put any kind of data inside an enum
variant: strings, numeric types, or structs, for example. You can even
include another enum! Also, standard library types are often not much more

complicated than what you might come up with.

Note that even though the standard library contains a definition for
IpAddr , we can still create and use our own definition without conflict
because we haven’t brought the standard library’s definition into our scope.

We’ll talk more about bringing types into scope in Chapter 7.

Let’s look at another example of an enum in Listing 6-2: this one has a

wide variety of types embedded in its variants.

enum Message {

Quit,
Move { x: 132, y: 132 },
Write(String),

ChangeColor (132, 132, 132),

Listing 6-2: A Message enum whose variants each store different

amounts and types of values

This enum has four variants with different types:

Quit Has no data associated with it at all

Move Has named fields, like a struct does

Write Includes asingle String

ChangeColor Includes three 132 wvalues

Defining an enum with variants such as the ones in Listing 6-2 is similar
to defining different kinds of struct definitions, except the enum doesn’t use
the struct keyword and all the variants are grouped together under the

Message type. The following structs could hold the same data that the

preceding enum variants hold:

struct QuitMessage; // unit struct
struct MoveMessage {
x: 132,
y: 132,
3
struct WriteMessage(String); // tuple struct

struct ChangeColorMessage(i32, 1i32, 1i32); // tup.

4

But if we used the different structs, each of which has its own type, we
couldn’t as easily define a function to take any of these kinds of messages
as we could with the Message enum defined in Listing 6-2, which is a

single type.

There is one more similarity between enums and structs: just as we’re
able to define methods on structs using impl , we’re also able to define
methods on enums. Here’s a method named call that we could define on

our Message enum:

impl Message {
fn call(&self) {
©® // method body would be defined here

}

® let m = Message::Write(String::from("hello"));
m.call();

The body of the method would use self to get the value that we called
the method on. In this example, we’ve created a variable m @ that has the
value Message: :Write(String::from("hello")), and thatis
what self will be in the body of the call method @ when

m.call() runs.

Let’s look at another enum in the standard library that is very common

and useful: Option.
The Option Enum and Its Advantages Over Null Values

This section explores a case study of Option , which is another enum
defined by the standard library. The Option type encodes the very
common scenario in which a value could be something or it could be

nothing.

For example, if you request the first item in a list containing multiple
items, you would get a value. If you request the first item in an empty list,
you would get nothing. Expressing this concept in terms of the type system
means the compiler can check whether you’ve handled all the cases you
should be handling; this functionality can prevent bugs that are extremely

common in other programming languages.

Programming language design is often thought of in terms of which
features you include, but the features you exclude are important too. Rust
doesn’t have the null feature that many other languages have. Null is a value
that means there is no value there. In languages with null, variables can

always be in one of two states: null or not-null.

In his 2009 presentation “Null References: The Billion Dollar Mistake,”

Tony Hoare, the inventor of null, had this to say:

I call it my billion-dollar mistake. At that time, I was designing the
first comprehensive type system for references in an object-oriented
language. My goal was to ensure that all use of references should be
absolutely safe, with checking performed automatically by the
compiler. But I couldn'’t resist the temptation to put in a null reference,
simply because it was so easy to implement. This has led to
innumerable errors, vulnerabilities, and system crashes, which have
probably caused a billion dollars of pain and damage in the last forty

years.

The problem with null values is that if you try to use a null value as a
not-null value, you’ll get an error of some kind. Because this null or not-

null property is pervasive, it’s extremely easy to make this kind of error.

However, the concept that null is trying to express is still a useful one: a

null is a value that is currently invalid or absent for some reason.

The problem isn’t really with the concept but with the particular
implementation. As such, Rust does not have nulls, but it does have an
enum that can encode the concept of a value being present or absent. This

enum is Option<T>, and it is defined by the standard library as follows:

enum Option<T> {
None,
Some(T),

The Option<T> enum is so useful that it’s even included in the
prelude; you don’t need to bring it into scope explicitly. Its variants are also
included in the prelude: you can use Some and None directly without the

Option:: prefix. The Option<T> enum is still just a regular enum,

and Some(T) and None are still variants of type Option<T>.

The <T> syntax is a feature of Rust we haven’t talked about yet. It’s a

generic type parameter, and we’ll cover generics in more detail in Chapter

10. For now, all you need to know is that <T> means that the Some
variant of the Option enum can hold one piece of data of any type, and
that each concrete type that gets used in place of T makes the overall
Option<T> type a different type. Here are some examples of using

Option values to hold number types and string types:

let some_number = Some(5);
let some_char = Some('e');

let absent_number: Option<i32> = None;

The type of some_number is Option<i32>. The type of
some_char is Option<char>, which is a different type. Rust can
infer these types because we’ve specified a value inside the Some variant.
For absent_number , Rust requires us to annotate the overall Option
type: the compiler can’t infer the type that the corresponding Some variant
will hold by looking only at a None value. Here, we tell Rust that we

mean for absent_number to be of type Option<i32>.

When we have a Some value, we know that a value is present and the
value is held within the Some . When we have a None value, in some
sense it means the same thing as null: we don’t have a valid value. So why

is having Option<T> any better than having null?

In short, because Option<T> and T (where T can be any type) are
different types, the compiler won’t let us use an Option<T> value as if it
were definitely a valid value. For example, this code won’t compile,

because it’s trying to add an 18 toan Option<i8>:

let x: 18 = 5;
let y: Option<i8> = Some(5);

let sum = x + vy;

If we run this code, we get an error message like this one:

error[EO277]: cannot add Option<i8>" to 'i8°
--> src/main.rs:5:17

|
| let sum = x + vy;

| A no implementation for "i8 -
I

help: the trait "Add<Option<i8>>" 1is not imp.

4

Intense! In effect, this error message means that Rust doesn’t understand
how to add an 18 and an Option<i8>, because they’re different types.
When we have a value of a type like 18 in Rust, the compiler will ensure
that we always have a valid value. We can proceed confidently without

having to check for null before using that value. Only when we have an

Option<i8> (or whatever type of value we’re working with) do we
have to worry about possibly not having a value, and the compiler will

make sure we handle that case before using the value.

In other words, you have to convert an Option<T> toa T before you
can perform T operations with it. Generally, this helps catch one of the
most common issues with null: assuming that something isn’t null when it

actually is.

Eliminating the risk of incorrectly assuming a not-null value helps you to
be more confident in your code. In order to have a value that can possibly
be null, you must explicitly opt in by making the type of that value

Option<T>. Then, when you use that value, you are required to
explicitly handle the case when the value is null. Everywhere that a value
has a type that isn’t an Option<T>, you can safely assume that the value
isn’t null. This was a deliberate design decision for Rust to limit null’s

pervasiveness and increase the safety of Rust code.

So how do you get the T value out of a Some variant when you have a
value of type Option<T> so that you can use that value? The
Option<T> enum has a large number of methods that are useful in a
variety of situations; you can check them out in its documentation.
Becoming familiar with the methods on Option<T> will be extremely

useful in your journey with Rust.

In general, in order to use an Option<T> value, you want to have code
that will handle each variant. You want some code that will run only when
you have a Some (T) value, and this code is allowed to use the inner T .
You want some other code to run only if you have a None value, and that
code doesn’t have a T value available. The match expression is a control
flow construct that does just this when used with enums: it will run different
code depending on which variant of the enum it has, and that code can use

the data inside the matching value.

The match Control Flow Construct

Rust has an extremely powerful control flow construct called match that
allows you to compare a value against a series of patterns and then execute
code based on which pattern matches. Patterns can be made up of literal
values, variable names, wildcards, and many other things; Chapter 18
covers all the different kinds of patterns and what they do. The power of
match comes from the expressiveness of the patterns and the fact that the

compiler confirms that all possible cases are handled.

Think of a match expression as being like a coin-sorting machine:
coins slide down a track with variously sized holes along it, and each coin
falls through the first hole it encounters that it fits into. In the same way,
values go through each pattern in a match, and at the first pattern the
value “fits,” the value falls into the associated code block to be used during

execution.

Speaking of coins, let’s use them as an example using match ! We can
write a function that takes an unknown US coin and, in a similar way as the
counting machine, determines which coin it is and returns its value in cents,

as shown in Listing 6-3.

® enum Coin {
Penny,
Nickel,
Dime,
Quarter,

fn value_in_cents(coin: Coin) -> u8 {
® match coin {
©® Coin::Penny => 1,
Coin::Nickel => 5,
Coin: :Dime => 10,
Colin: :Quarter => 25,

Listing 6-3: An enum and a match expression that has the variants of the

enum as its patterns

Let’s break down the match inthe value_in_cents function.

First we list the match keyword followed by an expression, which in this

case is the value coin @. This seems very similar to an expression used
with if, but there’s a big difference: with if , the expression needs to
return a Boolean value, but here it can return any type. The type of coin

in this example is the Coin enum that we defined at @.

Next are the match arms. An arm has two parts: a pattern and some
code. The first arm here has a pattern that is the value Coin: :Penny and
then the => operator that separates the pattern and the code to run ©. The
code in this case is just the value 1 . Each arm is separated from the next

with a comma.

When the match expression executes, it compares the resultant value
against the pattern of each arm, in order. If a pattern matches the value, the
code associated with that pattern is executed. If that pattern doesn’t match
the value, execution continues to the next arm, much as in a coin-sorting
machine. We can have as many arms as we need: in Listing 6-3, our

match has four arms.

The code associated with each arm is an expression, and the resultant
value of the expression in the matching arm is the value that gets returned

for the entire match expression.

We don’t typically use curly brackets if the match arm code is short, as it
is in Listing 6-3 where each arm just returns a value. If you want to run

multiple lines of code in a match arm, you must use curly brackets, and the

comma following the arm is then optional. For example, the following code
prints “Lucky penny!” every time the method is called with a

Coin: :Penny, but still returns the last value of the block, 1 :

fn value_in_cents(coin: Coin) -> u8 {
match coin {
Ccoin::Penny => {
println! ("Lucky penny!");
1
}

Coin: :Nickel => 5,
Coin::Dime => 10,
Coin: :Quarter => 25,

Patterns That Bind to Values

Another useful feature of match arms is that they can bind to the parts of the
values that match the pattern. This is how we can extract values out of

enum variants.

As an example, let’s change one of our enum variants to hold data inside
it. From 1999 through 2008, the United States minted quarters with
different designs for each of the 50 states on one side. No other coins got

state designs, so only quarters have this extra value. We can add this

information to our enum by changing the Quarter variant to include a

UsState value stored inside it, which we’ve done in Listing 6-4.

#[derive(Debug)] // so we can inspect the state :

enum UsState {
Alabama,
Alaska,

--snip--

enum Coin {
Penny,
Nickel,
Dime,
Quarter(UsState),

Listing 6-4: A Coin enum in which the Quarter variant also holds a

UsState value

Let’s imagine that a friend is trying to collect all 50 state quarters. While
we sort our loose change by coin type, we’ll also call out the name of the
state associated with each quarter so that if it’s one our friend doesn’t have,

they can add it to their collection.

In the match expression for this code, we add a variable called state
to the pattern that matches values of the variant Coin: :Quarter . When
a Coin::Quarter matches, the state variable will bind to the value
of that quarter’s state. Then we can use state in the code for that arm,

like so:

fn value_in_cents(coin: Coin) -> u8 {
match coin {

Coin::Penny => 1,

Coin: :Nickel => 5,

Coin: :Dime => 10,

Coin::Quarter(state) => {
println!("State quarter from {:?}!",
25

If we were to call
value_in_cents(Coin: :Quarter(UsState::Alaska)),
coin would be Coin::Quarter(UsState: :Alaska) . When we
compare that value with each of the match arms, none of them match until
we reach Coin: :Quarter(state) . At that point, the binding for

state will be the value UsState: :Alaska . We can then use that

binding in the println! expression, thus getting the inner state value

out of the Coin enum variant for Quarter .
Matching with Option<T>

In the previous section, we wanted to get the inner T value out of the
Some case when using Option<T> ; we can also handle Option<T>
using match , as we did with the Coin enum! Instead of comparing
coins, we’ll compare the variants of Option<T>, but the way the

match expression works remains the same.

Let’s say we want to write a function that takes an Option<i32> and,
if there’s a value inside, adds 1 to that value. If there isn’t a value inside, the
function should return the None value and not attempt to perform any

operations.

This function is very easy to write, thanks to match , and will look like

Listing 6-5.

fn plus_one(x: Option<i32>) -> Option<i32> {
match x {
® None => None,
® Some(i) => Some(i + 1),

}

let five = Some(5);
let six = plus_one(five); ©
let none = plus_one(None); O

Listing 6-5: A function that uses a match expression on an

Option<i32>

Let’s examine the first execution of plus_one in more detail. When
we call plus_one(five) ©, the variable X in the body of
plus_one will have the value Some (5) . We then compare that against

each match arm:

None => None,

The Some(5) value doesn’t match the pattern None @, so we

continue to the next arm:

Some(1i) => Some(i + 1),

Does Some(5) match Some (i) @? Why yes, it does! We have the
same variant. The 1 binds to the value contained in Some,so 1 takes
the value 5 . The code in the match arm is then executed, so we add 1 to

the value of 1 and create a new Some value with our total 6 inside.

Now let’s consider the second call of plus_one in Listing 6-5, where

X is None @. We enter the match and compare to the first arm @.

It matches! There’s no value to add to, so the program stops and returns
the None value on the right side of =>. Because the first arm matched,

no other arms are compared.

Combining match and enums is useful in many situations. You’ll see
this pattern a lot in Rust code: match against an enum, bind a variable to
the data inside, and then execute code based on it. It’s a bit tricky at first,
but once you get used to it, you’ll wish you had it in all languages. It’s

consistently a user favorite.

Matches Are Exhaustive

There’s one other aspect of match we need to discuss: the arms’ patterns
must cover all possibilities. Consider this version of our plus_one

function, which has a bug and won’t compile:

fn plus_one(x: Option<i32>) -> Option<i32> {
match x {
Some(1i) => Some(i + 1),

We didn’t handle the None case, so this code will cause a bug. Luckily,
it’s a bug Rust knows how to catch. If we try to compile this code, we’ll get

this error:

error[EO0O04]: non-exhaustive patterns: "None not
--> src/main.rs:3:15

3 match x {

|
|
| A pattern "None not covered
|

note: "Option<i32>" defined here
= note: the matched value 1is of type "Optic
help: ensure that all possible cases are being h:
a match arm with a wildcard pattern or an explic:
shown

4 ~ Some(i) => Some(i + 1),
5 = None => todo!(),

Rust knows that we didn’t cover every possible case, and even knows
which pattern we forgot! Matches in Rust are exhaustive: we must exhaust
every last possibility in order for the code to be valid. Especially in the case
of Option<T>, when Rust prevents us from forgetting to explicitly

handle the None case, it protects us from assuming that we have a value

when we might have null, thus making the billion-dollar mistake discussed

earlier impossible.

Catch-All Patterns and the _ Placeholder

Using enums, we can also take special actions for a few particular values,
but for all other values take one default action. Imagine we’re implementing
a game where, if you roll a 3 on a dice roll, your player doesn’t move, but
instead gets a new fancy hat. If you roll a 7, your player loses a fancy hat.
For all other values, your player moves that number of spaces on the game
board. Here’s a match that implements that logic, with the result of the
dice roll hardcoded rather than a random value, and all other logic
represented by functions without bodies because actually implementing

them is out of scope for this example:

let dice_roll = 9;
match dice_roll {
3 => add_fancy_hat(),
7 => remove_fancy_hat(),
® other => move_player(other),

}

fn add_fancy_hat() {}
fn remove_fancy_hat() {}
fn move_player (num_spaces: u8) {}

For the first two arms, the patterns are the literal values 3 and 7 . For
the last arm that covers every other possible value, the pattern is the
variable we’ve chosen to name other @. The code that runs for the

other arm uses the variable by passing it to the move_player

function.

This code compiles, even though we haven’t listed all the possible values
a u8 can have, because the last pattern will match all values not
specifically listed. This catch-all pattern meets the requirement that
match must be exhaustive. Note that we have to put the catch-all arm last
because the patterns are evaluated in order. If we put the catch-all arm
earlier, the other arms would never run, so Rust will warn us if we add arms

after a catch-all!

Rust also has a pattern we can use when we want a catch-all but don’t

want to use the value in the catch-all pattern: _ is a special pattern that

matches any value and does not bind to that value. This tells Rust we aren’t

going to use the value, so Rust won’t warn us about an unused variable.

Let’s change the rules of the game: now, if you roll anything other than a
3 or a 7, you must roll again. We no longer need to use the catch-all value,
so we can change our code to use _ instead of the variable named

other:

let dice_roll = 9;
match dice_roll {

3 => add_fancy_hat(),

7 => remove_fancy_hat(),
=> reroll(),

fn add_fancy_hat() {}
fn remove_fancy_hat() {}
fn reroll() {}

This example also meets the exhaustiveness requirement because we’re
explicitly ignoring all other values in the last arm; we haven’t forgotten

anything.

Finally, we’ll change the rules of the game one more time so that nothing
else happens on your turn if you roll anything other than a 3 or a 7. We can
express that by using the unit value (the empty tuple type we mentioned in

“The Tuple Type” on page 40) as the code that goes with the _ arm:

let dice_roll = 9;
match dice_roll {
3 => add_fancy_hat(),
7 => remove_fancy_hat(),

—=> (O

fn add_fancy_hat() {}
fn remove_fancy_hat() {}

Here, we’re telling Rust explicitly that we aren’t going to use any other
value that doesn’t match a pattern in an earlier arm, and we don’t want to

run any code in this case.

There’s more about patterns and matching that we’ll cover in Chapter 18.
For now, we’re going to move on to the if let syntax, which can be

useful in situations where the match expression is a bit wordy.

Concise Control Flow with if let

The 1f let syntax lets you combine if and let into a less verbose
way to handle values that match one pattern while ignoring the rest.
Consider the program in Listing 6-6 that matches on an Option<u8>
value in the config_max variable but only wants to execute code if the

value is the Some variant.

let config_max = Some(3u8);
match config_max {
Some(max) => println!("The maximum is configt

_ = (),

Listing 6-6: A match that only cares about executing code when the value

iIs Some

If the value is Some , we print out the value in the Some variant by
binding the value to the variable max in the pattern. We don’t want to do
anything with the None wvalue. To satisfy the match expression, we have
toadd _ => () after processing just one variant, which is annoying

boilerplate code to add.

Instead, we could write this in a shorter way using if let . The

following code behaves the same as the match in Listing 6-6:

let config_max = Some(3u8);
if let Some(max) = config_max {
println!("The maximum is configured to be {m:

The syntax 1f let takes a pattern and an expression separated by an
equal sign. It works the same way as a match , where the expression is
given to the match and the pattern is its first arm. In this case, the pattern
is Some(max) , and the max binds to the value inside the Some . We
can then use max in the body of the if let block in the same way we
used max in the corresponding match arm. The code inthe if let

block isn’t run if the value doesn’t match the pattern.

Using if let means less typing, less indentation, and less boilerplate
code. However, you lose the exhaustive checking that match enforces.
Choosing between match and if let depends on what you’re doing
in your particular situation and whether gaining conciseness is an

appropriate trade-off for losing exhaustive checking.

In other words, you can think of if let as syntax sugar fora match
that runs code when the value matches one pattern and then ignores all

other values.

We can include an else withan if let . The block of code that
goes with the else is the same as the block of code that would go with
the _ case in the match expression that is equivalent to the if let
and else . Recall the Coin enum definition in Listing 6-4, where the

Quarter variant also held a UsState value. If we wanted to count all
non-quarter coins we see while also announcing the state of the quarters, we

could do that with a match expression, like this:

let mut count = 0;

match coin {
Coin::Quarter(state) => println!("State quart
_ => count += 1,

Or we couldusean if let and else expression, like this:

let mut count = 0;
if let Coin::Quarter(state) = coin {
println!("State quarter from {:?}!", state);
} else {
count += 1;

If you have a situation in which your program has logic that is too
verbose to express using a match , remember that 1f let is in your

Rust toolbox as well.

Summary

We’ve now covered how to use enums to create custom types that can be
one of a set of enumerated values. We’ve shown how the standard library’s
Option<T> type helps you use the type system to prevent errors. When
enum values have data inside them, you can use match or if let to

extract and use those values, depending on how many cases you need to

handle.

Your Rust programs can now express concepts in your domain using
structs and enums. Creating custom types to use in your API ensures type
safety: the compiler will make certain your functions only get values of the

type each function expects.

In order to provide a well-organized API to your users that is
straightforward to use and only exposes exactly what your users will need,

let’s now turn to Rust’s modules.

OceanofPDF.com

https://oceanofpdf.com/

7

MANAGING GROWING
PROJECTS WITH PACKAGES,
CRATES, AND MODULES

As you write large programs, organizing your code will

become increasingly important. By grouping related
functionality and separating code with distinct features,
/ you’ll clarify where to find code that implements a particular

feature and where to go to change how a feature works.

The programs we’ve written so far have been in one module in one file.
As a project grows, you should organize code by splitting it into multiple
modules and then multiple files. A package can contain multiple binary
crates and optionally one library crate. As a package grows, you can extract
parts into separate crates that become external dependencies. This chapter
covers all these techniques. For very large projects comprising a set of
interrelated packages that evolve together, Cargo provides workspaces,

which we’ll cover in “Cargo Workspaces” on page 307.

We’ll also discuss encapsulating implementation details, which lets you

reuse code at a higher level: once you’ve implemented an operation, other

code can call your code via its public interface without having to know how
the implementation works. The way you write code defines which parts are
public for other code to use and which parts are private implementation
details that you reserve the right to change. This is another way to limit the

amount of detail you have to keep in your head.

A related concept is scope: the nested context in which code is written
has a set of names that are defined as “in scope.” When reading, writing,
and compiling code, programmers and compilers need to know whether a
particular name at a particular spot refers to a variable, function, struct,
enum, module, constant, or other item and what that item means. You can
create scopes and change which names are in or out of scope. You can’t
have two items with the same name in the same scope; tools are available to

resolve name conflicts.

Rust has a number of features that allow you to manage your code’s
organization, including which details are exposed, which details are private,
and what names are in each scope in your programs. These features,

sometimes collectively referred to as the module system, include:

Packages A Cargo feature that lets you build, test, and share crates

Crates A tree of modules that produces a library or executable

Modules and use Let you control the organization, scope, and privacy of

paths

Paths A way of naming an item, such as a struct, function, or module

In this chapter, we’ll cover all these features, discuss how they interact,
and explain how to use them to manage scope. By the end, you should have
a solid understanding of the module system and be able to work with scopes

like a pro!

Packages and Crates

The first parts of the module system we’ll cover are packages and crates.

A crate is the smallest amount of code that the Rust compiler considers at
a time. Even if you run rustc rather than cargo and pass a single
source code file (as we did all the way back in “Writing and Running a Rust
Program” on page 5), the compiler considers that file to be a crate. Crates
can contain modules, and the modules may be defined in other files that get

compiled with the crate, as we’ll see in the coming sections.

A crate can come in one of two forms: a binary crate or a library crate.
Binary crates are programs you can compile to an executable that you can
run, such as a command line program or a server. Each must have a
function called main that defines what happens when the executable runs.

All the crates we’ve created so far have been binary crates.

Library crates don’t have a main function, and they don’t compile to

an executable. Instead, they define functionality intended to be shared with

multiple projects. For example, the rand crate we used in Chapter 2
provides functionality that generates random numbers. Most of the time
when Rustaceans say “crate,” they mean library crate, and they use “crate”

interchangeably with the general programming concept of a “library.”

The crate root is a source file that the Rust compiler starts from and
makes up the root module of your crate (we’ll explain modules in depth in

“Defining Modules to Control Scope and Privacy” on page 123).

A package is a bundle of one or more crates that provides a set of
functionality. A package contains a Cargo.toml file that describes how to
build those crates. Cargo is actually a package that contains the binary crate
for the command line tool you’ve been using to build your code. The Cargo
package also contains a library crate that the binary crate depends on. Other
projects can depend on the Cargo library crate to use the same logic the

Cargo command line tool uses.

A crate can come in one of two forms: a binary crate or a library crate. A
package can contain as many binary crates as you like, but at most only one
library crate. A package must contain at least one crate, whether that’s a

library or binary crate.

Let’s walk through what happens when we create a package. First we

enter the command cargo new my-project:

$ cargo new my-project
Created binary (application) "my-project p:
$ 1s my-project
Cargo.toml
src
$ 1s my-project/src
main.rs

After werun cargo new my-project, weuse 1s to see what
Cargo creates. In the project directory, there’s a Cargo.toml file, giving us a
package. There’s also a src directory that contains main.rs. Open
Cargo.toml in your text editor, and note there’s no mention of src/main.rs.
Cargo follows a convention that src/main.rs is the crate root of a binary
crate with the same name as the package. Likewise, Cargo knows that if the
package directory contains src/lib.rs, the package contains a library crate
with the same name as the package, and src/lib.rs is its crate root. Cargo

passes the crate root files to rustc to build the library or binary.

Here, we have a package that only contains src/main.rs, meaning it only
contains a binary crate named my-project . If a package contains
src¢/main.rs and src/lib.rs, it has two crates: a binary and a library, both with
the same name as the package. A package can have multiple binary crates
by placing files in the src/bin directory: each file will be a separate binary

crate.

MODULES CHEAT SHEET

Before we get to the details of modules and paths, here we provide a quick reference on how
modules, paths, the use keyword, and the pub keyword work in the compiler, and how most
developers organize their code. We’ll be going through examples of each of these rules

throughout this chapter, but this is a great place to refer to as a reminder of how modules work.

Start from the crate root When compiling a crate, the compiler first looks in the crate root file

(usually src/lib.rs for a library crate or src/main.rs for a binary crate) for code to compile.

Declaring modules In the crate root file, you can declare new modules; say you declare a
“garden” module with mod garden; . The compiler will look for the module’s code in these

places:

« Inline, within curly brackets that replace the semicolon following mod garden
« In the file src/garden.rs

o In the file src/garden/mod.rs

Declaring submodules In any file other than the crate root, you can declare submodules. For
example, you might declare mod vegetables; in src/garden.rs. The compiler will look for

the submodule’s code within the directory named for the parent module in these places:

o Inline, directly following mod vegetables, within curly brackets instead of the
semicolon
« In the file src/garden/vegetables.rs

« In the file src/garden/vegetables/mod.rs

Paths to code in modules Once a module is part of your crate, you can refer to code in that
module from anywhere else in that same crate, as long as the privacy rules allow, using the path
to the code. For example, an Asparagus type in the garden vegetables module would be

found at crate::garden: :vegetables: :Asparagus.

Private vs. public Code within a module is private from its parent modules by default. To make

a module public, declare it with pub mod instead of mod . To make items within a public

module public as well, use pub before their declarations.

The use keyword Within a scope, the use keyword creates shortcuts to items to reduce

repetition of long paths. In any scope that can refer to

crate::garden::vegetables: :Asparagus, you can create a shortcut with use
crate::garden::vegetables: :Asparagus; and from then on you only need to
write Asparagus to make use of that type in the scope.

Here, we create a binary crate named backyard that illustrates these rules. The crate’s

directory, also named backyard , contains these files and directories:

backyard

— cCargo.lock

— cargo.toml
L— src

— garden

| L— vegetables.rs

I— garden.rs
L— main.rs

The crate root file in this case is src/main.rs, and it contains:

use crate::garden::vegetables: :Asparagus;
pub mod garden;

fn main() {
let plant = Asparagus {};
println!("I'm growing {:?}!", plant);

The pub mod garden; line tells the compiler to include the code it finds in

src/garden.rs, which is:

pub mod vegetables;

Here, pub mod vegetables; means the code in src/garden/vegetables.rs is included

too. That code is:

#[derive(Debug)]
pub struct Asparagus {}

Now let’s get into the details of these rules and demonstrate them in action!

Defining Modules to Control Scope and Privacy

In this section, we’ll talk about modules and other parts of the module
system, namely paths, which allow you to name items; the use keyword
that brings a path into scope; and the pub keyword to make items public.
We’ll also discuss the as keyword, external packages, and the glob

operator.

Modules let us organize code within a crate for readability and easy
reuse. Modules also allow us to control the privacy of items because code
within a module is private by default. Private items are internal
implementation details not available for outside use. We can choose to
make modules and the items within them public, which exposes them to

allow external code to use and depend on them.

As an example, let’s write a library crate that provides the functionality
of a restaurant. We’ll define the signatures of functions but leave their
bodies empty to concentrate on the organization of the code rather than the

implementation of a restaurant.

In the restaurant industry, some parts of a restaurant are referred to as
front of house and others as back of house. Front of house is where
customers are; this encompasses where the hosts seat customers, servers
take orders and payment, and bartenders make drinks. Back of house is
where the chefs and cooks work in the kitchen, dishwashers clean up, and

managers do administrative work.

To structure our crate in this way, we can organize its functions into
nested modules. Create a new library named restaurant by running
cargo new restaurant --1ib.Then enter the code in Listing 7-1
into src/lib.rs to define some modules and function signatures; this code is

the front of house section.

src/lib.rs

mod front_of_house {
mod hosting {
fn add_to_waitlist() {}

fn seat_at_table() {}

mod serving {
fn take_order() {}

fn serve_order() {}

fn take_payment() {}

Listing 7-1: A front_of_house module containing other modules that

then contain functions

We define a module with the mod keyword followed by the name of the
module (in this case, front_of_house). The body of the module then
goes inside curly brackets. Inside modules, we can place other modules, as
in this case with the modules hosting and serving . Modules can
also hold definitions for other items, such as structs, enums, constants,

traits, and as in Listing 7-1, functions.

By using modules, we can group related definitions together and name
why they’re related. Programmers using this code can navigate the code
based on the groups rather than having to read through all the definitions,

making it easier to find the definitions relevant to them. Programmers

adding new functionality to this code would know where to place the code

to keep the program organized.

Earlier, we mentioned that src/main.rs and src/lib.rs are called crate
roots. The reason for their name is that the contents of either of these two
files form a module named crate at the root of the crate’s module

structure, known as the module tree.

Listing 7-2 shows the module tree for the structure in Listing 7-1.

crate
L— front_of_ house

— hosting
| — add_to_waitlist

| L— seat_at_table
L— serving
— take_order
— serve_order
L— take_payment

Listing 7-2: The module tree for the code in Listing 7-1

This tree shows how some of the modules nest inside other modules; for
example, hosting nests inside front_of_house . The tree also
shows that some modules are siblings, meaning they’re defined in the same

module; hosting and serving are siblings defined within

front_of_house . If module A is contained inside module B, we say
that module A is the child of module B and that module B is the parent of
module A. Notice that the entire module tree is rooted under the implicit

module named crate.

The module tree might remind you of the filesystem’s directory tree on
your computer; this is a very apt comparison! Just like directories in a
filesystem, you use modules to organize your code. And just like files in a

directory, we need a way to find our modules.

Paths for Referring to an Item in the Module Tree

To show Rust where to find an item in a module tree, we use a path in the
same way we use a path when navigating a filesystem. To call a function,

we need to know its path.
A path can take two forms:

* An absolute path is the full path starting from a crate root; for code from
an external crate, the absolute path begins with the crate name, and for
code from the current crate, it starts with the literal crate.

e A relative path starts from the current module and uses self,

super , or an identifier in the current module.

Both absolute and relative paths are followed by one or more identifiers

separated by double colons (: :).

Returning to Listing 7-1, say we want to call the add_to_waitlist
function. This is the same as asking: what’s the path of the
add_to_waitlist function? Listing 7-3 contains Listing 7-1 with

some of the modules and functions removed.

We’ll show two ways to call the add_to_waitlist function from a
new function, eat_at_restaurant, defined in the crate root. These
paths are correct, but there’s another problem remaining that will prevent

this example from compiling as is. We’ll explain why in a bit.

The eat_at_restaurant function is part of our library crate’s
public API, so we mark it with the pub keyword. In “Exposing Paths with
the pub Keyword” on page 127, we’ll go into more detail about pub .

src/lib.rs

mod front_of_house {
mod hosting {
fn add_to_waitlist() {}

pub fn eat_at_restaurant() {
// Absolute path
crate: :front_of_house::hosting::add_to_waitl:

// Relative path
front_of_house::hosting::add_to_waitlist();

Listing 7-3: Calling the add_to_waitlist function using absolute

and relative paths

The first time we call the add_to_waitlist function in
eat_at_restaurant, we use an absolute path. The
add_to_waitlist function is defined in the same crate as
eat_at_restaurant , which means we can use the crate keyword

to start an absolute path. We then include each of the successive modules
until we make our way to add_to_waitlist . You can imagine a
filesystem with the same structure: we’d specify the path ’
/front_of_house/hosting/add_to_waitlist torun the
add_to_waitlist program; using the crate name to start from the

crate root is like using / to start from the filesystem root in your shell.

The second time we call add_to_waitlist in
eat_at_restaurant, we use a relative path. The path starts with
front_of_house, the name of the module defined at the same level of

the module tree as eat_at_restaurant . Here the filesystem
equivalent would be using the path
front_of_house/hosting/add_to_waitlist . Starting with a

module name means that the path is relative.

Choosing whether to use a relative or absolute path is a decision you’ll
make based on your project, and it depends on whether you’re more likely
to move item definition code separately from or together with the code that
uses the item. For example, if we moved the front_of_house module
and the eat_at_ restaurant function into a module named

customer_experience, we’d need to update the absolute path to
add_to_waitlist , but the relative path would still be valid. However,
if we moved the eat_at_restaurant function separately into a
module named dining, the absolute path to the add_to_waitlist
call would stay the same, but the relative path would need to be updated.
Our preference in general is to specify absolute paths because it’s more
likely we’ll want to move code definitions and item calls independently of

each other.

Let’s try to compile Listing_7-3 and find out why it won’t compile yet!

The errors we get are shown in Listing 7-4.

$ cargo build
Compiling restaurant v0.1.0 (file:///projects.
error[E0603]: module "hosting 1is private
--> src/lib.rs:9:28

|
9 | crate: :front_of_house::hosting: :add_to_w:
| ANANAANN private me

note: the module "hosting 1is defined here

--> src/lib.rs:2:5

|
2 | mod hosting {
| NANNNNNNNNNN

error[EO603]: module "hosting is private
--> src/lib.rs:12:21

12 front_of_house: :hosting::add_to_waitlisi

ANNANAN private module

note: the module "hosting 1s defined here
--> src/lib.rs:2:5

|
2 | mod hosting {
| NNNNNNNNNNN

Listing 7-4: Compiler errors from building the code in Listing 7-3

The error messages say that module hosting is private. In other
words, we have the correct paths for the hosting module and the
add_to_waitlist function, but Rust won’t let us use them because it
doesn’t have access to the private sections. In Rust, all items (functions,
methods, structs, enums, modules, and constants) are private to parent
modules by default. If you want to make an item like a function or struct

private, you put it in a module.

Items in a parent module can’t use the private items inside child modules,
but items in child modules can use the items in their ancestor modules. This
is because child modules wrap and hide their implementation details, but
the child modules can see the context in which they’re defined. To continue
with our metaphor, think of the privacy rules as being like the back office of
a restaurant: what goes on in there is private to restaurant customers, but

office managers can see and do everything in the restaurant they operate.

Rust chose to have the module system function this way so that hiding
inner implementation details is the default. That way, you know which parts
of the inner code you can change without breaking outer code. However,
Rust does give you the option to expose inner parts of child modules’ code
to outer ancestor modules by using the pub keyword to make an item

public.
Exposing Paths with the pub Keyword

Let’s return to the error in Listing 7-4 that told us the hosting module is
private. We want the eat_at_restaurant function in the parent
module to have access to the add_to_waitlist function in the child
module, so we mark the hosting module with the pub keyword, as

shown in Listing 7-5.

src/lib.rs

mod front_of_house {
pub mod hosting {
fn add_to_waitlist() {}

--Snip- -

Listing 7-5: Declaring the hosting module as pub to use it from

eat_at_restaurant

Unfortunately, the code in Listing 7-5 still results in compiler errors, as

shown in Listing 7-6.

$ cargo build
Compiling restaurant v0.1.0 (file:///projects,
error[EO603]: function "add_to_waitlist ™ is priv:
--> src/1lib.rs:9:37

|
9 | crate: :front_of_house: :hosting: :add_to_w:
|

ANNNNNNNN

note: the function "add_to waitlist 1is defined |
--> src/1ib.rs:3:9
|
3 | fn add_to_waitlist() {}

| ANNNNNNNNNNNNNNNNNNNN

error[EO603]: function "add_to_waitlist 1is priv:
--> src/1lib.rs:12:30

12 front_of_house: :hosting::add_to_waitlisi

|
|
| ANNNNNANNNNNNNNNN
|

note: the function "add to waitlist 1is defined |
--> src/l1lib.rs:3:9

|
3 | fn add_to_waitlist() {}

| NNNNNNNNNNNNNNNNNNNN

Listing 7-6: Compiler errors from building the code in Listing 7-5

What happened? Adding the pub keyword in front of mod hosting
makes the module public. With this change, if we can access
front_of_house, we can access hosting . But the contents of
hosting are still private; making the module public doesn’t make its
contents public. The pub keyword on a module only lets code in its
ancestor modules refer to it, not access its inner code. Because modules are
containers, there’s not much we can do by only making the module public;
we need to go further and choose to make one or more of the items within

the module public as well.

The errors in Listing 7-6 say that the add_to_waitlist function is
private. The privacy rules apply to structs, enums, functions, and methods

as well as modules.

Let’s also make the add_to_waitlist function public by adding the

pub keyword before its definition, as in Listing 7-7.

src/lib.rs

mod front_of_house {
pub mod hosting {
pub fn add_to_waitlist() {3}

--Snip- -

Listing 7-7: Adding the pub keywordto mod hosting and fn
add_to_waitlist lets us call the function from

eat _at _restaurant.

Now the code will compile! To see why adding the pub keyword lets us
use these paths in add_to_waitlist with respect to the privacy rules,

let’s look at the absolute and the relative paths.

In the absolute path, we start with crate, the root of our crate’s
module tree. The front_of_ house module is defined in the crate root.
While front_of_house isn’t public, because the

eat_at_restaurant function is defined in the same module as
front_of_house (thatis, eat_at_restaurant and
front_of_house are siblings), we canreferto front_of_house
from eat_at_restaurant . Nextisthe hosting module marked
with pub . We can access the parent module of hosting, so we can
access hosting . Finally, the add_to_waitlist function is marked

with pub and we can access its parent module, so this function call works!

In the relative path, the logic is the same as the absolute path except for
the first step: rather than starting from the crate root, the path starts from
front_of_house.The front_of_house module is defined within
the same module as eat_at_restaurant, so the relative path starting
from the module in which eat_at restaurant is defined works.
Then, because hosting and add_to_waitlist are marked with

pub , the rest of the path works, and this function call is valid!

If you plan on sharing your library crate so other projects can use your
code, your public API is your contract with users of your crate that
determines how they can interact with your code. There are many
considerations around managing changes to your public API to make it

easier for people to depend on your crate. These considerations are beyond

the scope of this book; if you’re interested in this topic, see the Rust API

Guidelines at https:/rust-lang.github.io/api-guidelines.

BEST PRACTICES FOR PACKAGES WITH A BINARY AND A LIBRARY

We mentioned that a package can contain both a src/main.rs binary crate root as well as a
src/lib.rs library crate root, and both crates will have the package name by default. Typically,
packages with this pattern of containing both a library and a binary crate will have just enough
code in the binary crate to start an executable that calls code with the library crate. This lets
other projects benefit from the most functionality that the package provides because the library

crate’s code can be shared.

The module tree should be defined in src/lib.rs. Then, any public items can be used in the
binary crate by starting paths with the name of the package. The binary crate becomes a user of
the library crate just like a completely external crate would use the library crate: it can only use
the public API. This helps you design a good API; not only are you the author, you’re also a

client!

In Chapter 12, we’ll demonstrate this organizational practice with a command line program

that will contain both a binary crate and a library crate.

Starting Relative Paths with super

We can construct relative paths that begin in the parent module, rather than

the current module or the crate root, by using super at the start of the

path. This is like starting a filesystem path with the .. syntax. Using
super allows us to reference an item that we know is in the parent

module, which can make rearranging the module tree easier when the

https://rust-lang.github.io/api-guidelines

module is closely related to the parent but the parent might be moved

elsewhere in the module tree someday.

Consider the code in Listing 7-8 that models the situation in which a chef
fixes an incorrect order and personally brings it out to the customer. The
function fix_incorrect_order defined inthe back_of_house
module calls the function deliver_order defined in the parent module

by specifying the path to deliver_order, starting with super .

src/lib.rs

fn deliver_order() {}

mod back_of_house {
fn fix_incorrect_order() {
cook_order();
super::deliver_order();

fn cook_order() {}

Listing 7-8: Calling a function using a relative path starting with super

The fix_incorrect_order functionisinthe back _of_house

module, so we can use Super to go to the parent module of

back of_house, which in this case is crate , the root. From there,
we look for deliver_order and find it. Success! We think the

back_of_house module and the deliver_order function are
likely to stay in the same relationship to each other and get moved together
should we decide to reorganize the crate’s module tree. Therefore, we used

super so we’ll have fewer places to update code in the future if this code

gets moved to a different module.
Making Structs and Enums Public

We can also use pub to designate structs and enums as public, but there
are a few extra details to the usage of pub with structs and enums. If we
use pub before a struct definition, we make the struct public, but the
struct’s fields will still be private. We can make each field public or not on a
case-by-case basis. In Listing 7-9, we’ve defined a public
back_of_house: :Breakfast struct with a public toast field but
a private seasonal_fruit field. This models the case in a restaurant
where the customer can pick the type of bread that comes with a meal, but
the chef decides which fruit accompanies the meal based on what’s in
season and in stock. The available fruit changes quickly, so customers can’t

choose the fruit or even see which fruit they’ll get.

src/lib.rs

mod

pub

back_of_house {

pub struct Breakfast {
pub toast: String,
seasonal_fruit: String,

impl Breakfast {
pub fn summer(toast: &str) -> Breakfast -
Breakfast {
toast: String::from(toast),
seasonal_fruit: String::from("pe:

fn eat_at_restaurant() {

// Order a breakfast in the summer with Rye !
let mut meal = back_of_house: :Breakfast: :sumr
// Change our mind about what bread we'd like
meal.toast = String::from("Wheat");
println!("I'd like {} toast please", meal.to:

// The next line won't compile if we uncommel
// allowed to see or modify the seasonal fru:
// with the meal.

// meal.seasonal_fruit = String::from("blueb:s

Listing 7-9: A struct with some public fields and some private fields

Because the toast field in the back_of_house: :Breakfast
struct is public, in eat_at_restaurant we can write and read to the
toast field using dot notation. Notice that we can’t use the
seasonal_fruit fieldin eat_at_restaurant, because
seasonal_fruit is private. Try uncommenting the line modifying the

seasonal_fruit field value to see what error you get!

Also, note that because back_of_house: :Breakfast hasa
private field, the struct needs to provide a public associated function that
constructs an instance of Breakfast (we’ve named it summer here).
If Breakfast didn’t have such a function, we couldn’t create an instance
of Breakfast in eat_at_restaurant because we couldn’t set the
value of the private seasonal_fruit field in

eat_at_restaurant.

In contrast, if we make an enum public, all of its variants are then public.
We only need the pub before the enum keyword, as shown in Listing 7-
10.

src/lib.rs

mod back_of_house {
pub enum Appetizer {
Soup,
Salad,

pub fn eat_at_restaurant() {
let orderl = back_of_house: :Appetizer: :Soup;
let order2 = back_of_house: :Appetizer::Salad,

Listing 7-10: Designating an enum as public makes all its variants public.

Because we made the Appetizer enum public, we can use the Soup

and Salad variantsin eat _at restaurant.

Enums aren’t very useful unless their variants are public; it would be
annoying to have to annotate all enum variants with pub in every case, so
the default for enum variants is to be public. Structs are often useful without
their fields being public, so struct fields follow the general rule of

everything being private by default unless annotated with pub .

There’s one more situation involving pub that we haven’t covered, and
that is our last module system feature: the use keyword. We’ll cover

use by itself first, and then we’ll show how to combine pub and use.

Bringing Paths into Scope with the use Keyword

Having to write out the paths to call functions can feel inconvenient and
repetitive. In Listing 7-7, whether we chose the absolute or relative path to
the add_to_waitlist function, every time we wanted to call
add_to_waitlist we had to specify front_of_house and
hosting too. Fortunately, there’s a way to simplify this process: we can
create a shortcut to a path with the use keyword once, and then use the

shorter name everywhere else in the scope.

In Listing 7-11, we bring the
crate::front_of_house: :hosting module into the scope of the
eat_at_restaurant function so we only have to specify
hosting: :add_to_waitlist tocall the add_to_waitlist

function in eat_at restaurant.

src/lib.rs

mod front_of_house {
pub mod hosting {
pub fn add_to_waitlist() {}

use crate::front_of_house::hosting;

pub fn eat_at_restaurant() {
hosting::add_to_waitlist();

Listing 7-11: Bringing a module into scope with use

Adding use and a path in a scope is similar to creating a symbolic link
in the filesystem. By adding use
crate: :front_of_house: :hosting in the crate root, hosting
is now a valid name in that scope, just as though the hosting module
had been defined in the crate root. Paths brought into scope with use also

check privacy, like any other paths.

Note that use only creates the shortcut for the particular scope in which
the use occurs. Listing 7-12 moves the eat_at_restaurant
function into a new child module named customer , which is then a
different scope than the use statement, so the function body won’t

compile.

src/lib.rs

mod front_of_house {
pub mod hosting {
pub fn add_to_waitlist() {}

use crate::front_of_house::hosting;

mod customer {
pub fn eat_at_restaurant() {
hosting::add_to_waitlist();

Listing 7-12: A use statement only applies in the scope it’s in.

The compiler error shows that the shortcut no longer applies within the

customer module:

error[EO433]: failed to resolve: use of undeclart
--> src/lib.rs:11:9
|
11 | hosting: :add_to_waitlist();
| ANNAAAN use of undeclared crate or 1

warning: unused import: “crate::front_of_house::l
--> src/lib.rs:7:5
|

7 | use crate::front_of_house::hosting;
| NANNNNNNNNNNNNNNNNNNNNNNNNNNNNN

= note: “#[warn(unused_imports)] on by defauli

Notice there’s also a warning that the use is no longer used in its
scope! To fix this problem, move the use within the customer module
too, or reference the shortcut in the parent module with

super: :hosting within the child customer module.
Creating Idiomatic use Paths

In Listing 7-11, you might have wondered why we specified use
crate::front_of_house::hosting and then called
hosting::add_to_waitlist in eat_at_restaurant, rather

than specifying the use path all the way out to the

||v

add_to_waitlist function to achieve the same result, as in Listing

13.

src/lib.rs

mod front_of_house {
pub mod hosting {
pub fn add_to_waitlist() {}

use crate::front_of_house::hosting::add_to_waitl:

pub fn eat_at_restaurant() {
add_to_waitlist();

4

Listing 7-13: Bringing the add_to_waitlist function into scope with

use , which is unidiomatic

Although both Listing 7-11 and Listing 7-13 accomplish the same task, L.
isting 7-11 is the idiomatic way to bring a function into scope with use .
Bringing the function’s parent module into scope with use means we
have to specify the parent module when calling the function. Specifying the
parent module when calling the function makes it clear that the function
isn’t locally defined while still minimizing repetition of the full path. The
code in Listing 7-13 is unclear as to where add_to_waitlist is
defined.

On the other hand, when bringing in structs, enums, and other items with
use, it’s idiomatic to specify the full path. Listing 7-14 shows the
idiomatic way to bring the standard library’s HashMap struct into the

scope of a binary crate.

src/main.rs

use std::collections::HashMap;

fn main() {
let mut map = HashMap::new();
map.insert(1, 2);

Listing 7-14: Bringing HashMap into scope in an idiomatic way

There’s no strong reason behind this idiom: it’s just the convention that
has emerged, and folks have gotten used to reading and writing Rust code

this way.

The exception to this idiom is if we’re bringing two items with the same
name into scope with use statements, because Rust doesn’t allow that. Lis
ting 7-15 shows how to bring two Result types into scope that have the

same name but different parent modules, and how to refer to them.

src/lib.rs

use std::fmt;
use std::io;

fn functionl() -> fmt::Result {

--snip--

fn function2() -> io::Result<()> {

--snip--

Listing 7-15: Bringing two types with the same name into the same scope

requires using their parent modules.

As you can see, using the parent modules distinguishes the two
Result types. If instead we specified use std::fmt::Result and
use std::io::Result,we’dhavetwo Result types in the same
scope, and Rust wouldn’t know which one we meant when we used

Result.
Providing New Names with the as Keyword

There’s another solution to the problem of bringing two types of the same
name into the same scope with use : after the path, we can specify as
and a new local name, or alias, for the type. Listing_7-16 shows another
way to write the code in Listing 7-15 by renaming one of the two Result

types using as .

src/lib.rs

use std::fmt::Result;
use std::io::Result as IoResult;

fn functionli() -> Result {

--snip--

fn function2() -> IoResult<()> {

--snip--

Listing 7-16: Renaming a type when it’s brought into scope with the as

keyword

In the second use statement, we chose the new name IoResult for
the std::10::Result type, which won’t conflict with the Result
from std: :fmt that we’ve also brought into scope. Listing 7-15 and List

ing 7-16 are considered idiomatic, so the choice is up to you!
Re-exporting Names with pub use

When we bring a name into scope with the use keyword, the name
available in the new scope is private. To enable the code that calls our code
to refer to that name as if it had been defined in that code’s scope, we can

combine pub and use . This technique is called re-exporting because

we’re bringing an item into scope but also making that item available for

others to bring into their scope.

Listing 7-17 shows the code in Listing 7-11 with use in the root

module changed to pub use.

src/lib.rs

mod front_of_house {
pub mod hosting {
pub fn add_to_waitlist() {}

pub use crate::front_of_house: :hosting;

pub fn eat_at_restaurant() {
hosting: :add_to_waitlist();

Listing 7-17: Making a name available for any code to use from a new

scope with pub use

Before this change, external code would have to call the
add_to_waitlist function by using the path

restaurant::front_of_house::hosting::add_to_waitli

st () . Now that this pub use has re-exported the hosting module
from the root module, external code can use the path

restaurant: :hosting::add_to_waitlist() instead.

Re-exporting is useful when the internal structure of your code is
different from how programmers calling your code would think about the
domain. For example, in this restaurant metaphor, the people running the
restaurant think about “front of house” and “back of house.” But customers
visiting a restaurant probably won’t think about the parts of the restaurant in
those terms. With pub use , we can write our code with one structure but
expose a different structure. Doing so makes our library well organized for
programmers working on the library and programmers calling the library.
We’ll look at another example of pub use and how it affects your crate’s
documentation in “Exporting a Convenient Public API with pub use” on

page 300.
Using External Packages

In Chapter 2, we programmed a guessing game project that used an external
package called rand to get random numbers. To use rand in our

project, we added this line to Cargo.toml:

Cargo.toml

rand = "0.8.5"

Adding rand as a dependency in Cargo.toml tells Cargo to download

the rand package and any dependencies from https://crates.io, and make

rand available to our project.

Then, to bring rand definitions into the scope of our package, we
added a use line starting with the name of the crate, rand , and listed the
items we wanted to bring into scope. Recall that in “Generating a Random
Number” on page 22, we brought the Rng trait into scope and called the

rand: :thread_rng function:

use rand: :Rng;

fn main() {
let secret_number = rand::thread_rng().gen_r:

Members of the Rust community have made many packages available at

https://crates.io, and pulling any of them into your package involves these

same steps: listing them in your package’s Cargo.toml file and using use

to bring items from their crates into scope.

Note that the standard std library is also a crate that’s external to our
package. Because the standard library is shipped with the Rust language, we

don’t need to change Cargo.toml to include std . But we do need to refer

https://crates.io/
https://crates.io/

to it with use to bring items from there into our package’s scope. For

example, with HashMap we would use this line:

use std::collections::HashMap;

This is an absolute path starting with std , the name of the standard

library crate.
Using Nested Paths to Clean Up Large use Lists

If we’re using multiple items defined in the same crate or same module,
listing each item on its own line can take up a lot of vertical space in our
files. For example, these two USe statements we had in the guessing game

in Listing 2-4 bring items from std into scope:

src/main.rs

--snip--
use std::cmp::0rdering;
use std::io0;

--snip--

Instead, we can use nested paths to bring the same items into scope in

one line. We do this by specifying the common part of the path, followed by

two colons, and then curly brackets around a list of the parts of the paths

that differ, as shown in Listing 7-18.

src¢/main.rs

--snip--
use std::{cmp::0rdering, io};

--snip--

Listing 7-18: Specifying a nested path to bring multiple items with the same

prefix into scope

In bigger programs, bringing many items into scope from the same crate
or module using nested paths can reduce the number of separate use

statements needed by a lot!

We can use a nested path at any level in a path, which is useful when
combining two USe€ statements that share a subpath. For example, Listing
7-19 shows two USe statements: one that brings std: :10 into scope

and one that brings std::io::Write into scope.

src/lib.rs

use std::io;
use std::io::Write;

Listing 7-19: Two use statements where one is a subpath of the other

The common part of these two paths is std: : 10, and that’s the
complete first path. To merge these two paths into one use statement, we

can use self in the nested path, as shown in Listing 7-20.

src/lib.rs

use std::io::{self, Write};

Listing 7-20: Combining the paths in Listing 7-19 into one US€ statement
This line brings std::i0 and std::i0::Write into scope.
The Glob Operator

If we want to bring all public items defined in a path into scope, we can

specify that path followed by the * glob operator:

use std::collections::*;

This use statement brings all public items defined in
std::collections into the current scope. Be careful when using the
glob operator! Glob can make it harder to tell what names are in scope and

where a name used in your program was defined.

The glob operator is often used when testing to bring everything under
test into the tests module; we’ll talk about that in “How to Write Tests”
on page 216. The glob operator is also sometimes used as part of the
prelude pattern: see the standard library documentation for more

information on that pattern.

Separating Modules into Different Files

So far, all the examples in this chapter defined multiple modules in one file.
When modules get large, you might want to move their definitions to a

separate file to make the code easier to navigate.

For example, let’s start from the code in Listing 7-17 that had multiple
restaurant modules. We’ll extract modules into files instead of having all the
modules defined in the crate root file. In this case, the crate root file is
src/lib.rs, but this procedure also works with binary crates whose crate root

file is src/main.rs.

First we’ll extract the front_of_house module to its own file.
Remove the code inside the curly brackets for the front_of_house
module, leaving only the mod front_of_house; declaration, so that
src/lib.rs contains the code shown in Listing 7-21. Note that this won’t

compile until we create the src/front_of_house.rs file in Listing 7-22.

src/lib.rs

mod front_of_house;

pub use crate::front_of_house: :hosting;

pub fn eat_at_restaurant() {
hosting: :add_to_waitlist();

Listing 7-21: Declaring the front_of_house module whose body will

be in src/front_of_house.rs

Next, place the code that was in the curly brackets into a new file named
src/front_of_house.rs, as shown in Listing 7-22. The compiler knows to
look in this file because it came across the module declaration in the crate

root with the name front of_ house.

src/front_of house.rs

pub mod hosting {
pub fn add_to_waitlist() {3}

Listing 7-22: Definitions inside the front_of_house module in

src/front_of_house.rs

Note that you only need to load a file using a mod declaration once in
your module tree. Once the compiler knows the file is part of the project
(and knows where in the module tree the code resides because of where
you’ve put the mod statement), other files in your project should refer to
the loaded file’s code using a path to where it was declared, as covered in
“Paths for Referring to an Item in the Module Tree” on page 125. In other
words, mod is not an “include” operation that you may have seen in other

programming languages.

Next, we’ll extract the hosting module to its own file. The process is
a bit different because hosting is a child module of
front_of_house, not of the root module. We’ll place the file for
hosting in a new directory that will be named for its ancestors in the

module tree, in this case src/front_of_house.

To start moving hosting, we change src/front_of_house.rs to contain

only the declaration of the hosting module:

src/front_of _house.rs

pub mod hosting;

Then we create a src/front_of_house directory and a hosting.rs file to

contain the definitions made in the hosting module:

src/front_of_house/hosting.rs

pub fn add_to_waitlist() {}

If we instead put hosting.rs in the src directory, the compiler would
expect the hosting.rs code to be in a hosting module declared in the
crate root, and not declared as a child of the front_of_house module.
The compiler’s rules for which files to check for which modules’ code mean

the directories and files more closely match the module tree.

ALTERNATE FILE PATHS

So far we’ve covered the most idiomatic file paths the Rust compiler uses, but Rust also
supports an older style of file path. For a module named front_of_house declared in the

crate root, the compiler will look for the module’s code in:

« src/front_of_house.rs (what we covered)

« src/front_of_house/mod.rs (older style, still supported path)

For a module named hosting that is a submodule of front_of_house , the compiler

will look for the module’s code in:

« src/front_of_house/hosting.rs (what we covered)

« src/front_of_house/hosting/mod.rs (older style, still supported path)

If you use both styles for the same module, you’ll get a compiler error. Using a mix of both
styles for different modules in the same project is allowed, but might be confusing for people

navigating your project.

The main downside to the style that uses files named mod.rs is that your project can end up
with many files named mod.rs, which can get confusing when you have them open in your

editor at the same time.

We’ve moved each module’s code to a separate file, and the module tree
remains the same. The function calls in eat _at restaurant will
work without any modification, even though the definitions live in different
files. This technique lets you move modules to new files as they grow in

size.

Note that the pub use crate::front_of_house: :hosting
statement in src/lib.rs also hasn’t changed, nor does use have any impact
on what files are compiled as part of the crate. The mod keyword declares
modules, and Rust looks in a file with the same name as the module for the

code that goes into that module.

Summary

Rust lets you split a package into multiple crates and a crate into modules
so you can refer to items defined in one module from another module. You
can do this by specifying absolute or relative paths. These paths can be
brought into scope with a use statement so you can use a shorter path for
multiple uses of the item in that scope. Module code is private by default,

but you can make definitions public by adding the pub keyword.

In the next chapter, we’ll look at some collection data structures in the

standard library that you can use in your neatly organized code.

OceanofPDF.com

https://oceanofpdf.com/

8
COMMON COLLECTIONS

Rust’s standard library includes a number of very useful data

structures called collections. Most other data types represent

one specific value, but collections can contain multiple

7/ values. Unlike the built-in array and tuple types, the data
that these collections point to is stored on the heap, which
means the amount of data does not need to be known at

compile time and can grow or shrink as the program runs. Each kind of

collection has different capabilities and costs, and choosing an appropriate

one for your current situation is a skill you’ll develop over time. In this

chapter, we’ll discuss three collections that are used very often in Rust

programs:

* A vector allows you to store a variable number of values next to each
other.

e A string is a collection of characters. We’ve mentioned the String
type previously, but in this chapter we’ll talk about it in depth.

e A hash map allows you to associate a value with a specific key. It’s a
particular implementation of the more general data structure called a

map.

To learn about the other kinds of collections provided by the standard

library, see the documentation at https://doc.rust-lang.org/std/collections/in

dex.html.

We’ll discuss how to create and update vectors, strings, and hash maps,

as well as what makes each special.

Storing Lists of Values with Vectors

The first collection type we’ll look at is Vec<T>, also known as a vector.
Vectors allow you to store more than one value in a single data structure
that puts all the values next to each other in memory. Vectors can only store
values of the same type. They are useful when you have a list of items, such

as the lines of text in a file or the prices of items in a shopping cart.
Creating a New Vector

To create a new empty vector, we call the Vec: : new function, as shown

in Listing 8-1.
let v: Vec<i32> = Vec::new();

Listing 8-1: Creating a new, empty vector to hold values of type i32

Note that we added a type annotation here. Because we aren’t inserting

any values into this vector, Rust doesn’t know what kind of elements we

https://doc.rust-lang.org/std/collections/index.html

intend to store. This is an important point. Vectors are implemented using
generics; we’ll cover how to use generics with your own types in Chapter
10. For now, know that the Vec<T> type provided by the standard library
can hold any type. When we create a vector to hold a specific type, we can
specify the type within angle brackets. In Listing 8-1, we’ve told Rust that

the Vec<T> in v will hold elements of the 132 type.

More often, you’ll create a Vec<T> with initial values and Rust will
infer the type of value you want to store, so you rarely need to do this type
annotation. Rust conveniently provides the vec! macro, which will create
a new vector that holds the values you give it. Listing 8-2 creates a new

Vec<132> that holds the values 1, 2, and 3. The integer type is 132
because that’s the default integer type, as we discussed in “Data Types” on

page 36.

let v = vec![1, 2, 3];

Listing 8-2: Creating a new vector containing values

Because we’ve given initial 132 values, Rust can infer that the type of
Vv is Vec<132>, and the type annotation isn’t necessary. Next, we’ll look

at how to modify a vector.

Updating a Vector

To create a vector and then add elements to it, we can use the push

method, as shown in Listing 8-3.

let mut v = Vec::new();

.push(5);
.push(6);
.push(7);
.push(8);

< < < <

Listing 8-3: Using the push method to add values to a vector

As with any variable, if we want to be able to change its value, we need
to make it mutable using the mut keyword, as discussed in Chapter 3. The
numbers we place inside are all of type 132, and Rust infers this from the

data, so we don’t need the Vec<i32> annotation.
Reading Elements of Vectors

There are two ways to reference a value stored in a vector: via indexing or
by using the get method. In the following examples, we’ve annotated the

types of the values that are returned from these functions for extra clarity.

Listing 8-4 shows both methods of accessing a value in a vector, with

indexing syntax and the get method.

let v = vec![1, 2, 3, 4, 5];

@ let third: &i32 = &v[2];
println!("The third element is {third}");

® let third: Option<&i32> = v.get(2);
match third {
Some(third) => println!("The third element i

None => println!("There is no third element.'

Listing 8-4: Using indexing syntax and using the get method to access an

item in a vector

Note a few details here. We use the index value of 2 to get the third
element @ because vectors are indexed by number, starting at zero. Using
& and [] gives us a reference to the element at the index value. When we
use the get method with the index passed as an argument @, we get an

Option<&T> that we can use with match .

Rust provides these two ways to reference an element so you can choose
how the program behaves when you try to use an index value outside the

range of existing elements. As an example, let’s see what happens when we

have a vector of five elements and then we try to access an element at index

100 with each technique, as shown in Listing 8-5.

let v = vec![1, 2, 3, 4, 5];

let does_not_exist
let does_not exist

&v[100];
v.get(100);

Listing 8-5: Attempting to access the element at index 100 in a vector

containing five elements

When we run this code, the first [] method will cause the program to
panic because it references a nonexistent element. This method is best used
when you want your program to crash if there’s an attempt to access an

element past the end of the vector.

When the get method is passed an index that is outside the vector, it
returns None without panicking. You would use this method if accessing
an element beyond the range of the vector may happen occasionally under
normal circumstances. Your code will then have logic to handle having
either Some (&element) or None, as discussed in Chapter 6. For
example, the index could be coming from a person entering a number. If
they accidentally enter a number that’s too large and the program gets a

None value, you could tell the user how many items are in the current

vector and give them another chance to enter a valid value. That would be

more user-friendly than crashing the program due to a typo!

When the program has a valid reference, the borrow checker enforces the
ownership and borrowing rules (covered in Chapter 4) to ensure this
reference and any other references to the contents of the vector remain
valid. Recall the rule that states you can’t have mutable and immutable
references in the same scope. That rule applies in Listing 8-6, where we
hold an immutable reference to the first element in a vector and try to add
an element to the end. This program won’t work if we also try to refer to

that element later in the function.

let mut v = vec![1, 2, 3, 4, 5];

let first

&v[O];

V.push(6);

println!("The first element 1is: {first}");

Listing 8-6: Attempting to add an element to a vector while holding a

reference to an item

Compiling this code will result in this error:

error[EG502]: cannot borrow v as mutable becau:
immutable
--> src/main.rs:6:5

println!("The first element is: {first}"
----- ir

|
4 | let first = &v[0O];
| - immutable borrow occurs h¢
5 |
6 | V.push(6);
| ANNANANAN mutable borrow occurs here
7|
8 |
|

The code in Listing 8-6 might look like it should work: why should a
reference to the first element care about changes at the end of the vector?
This error is due to the way vectors work: because vectors put the values
next to each other in memory, adding a new element onto the end of the
vector might require allocating new memory and copying the old elements
to the new space, if there isn’t enough room to put all the elements next to
each other where the vector is currently stored. In that case, the reference to
the first element would be pointing to deallocated memory. The borrowing

rules prevent programs from ending up in that situation.

For more on the implementation details of the Vec<T> type, see
“The Rustonomicon” at https://doc.rust-lang.org/nomicon/vec/vec.h

tml.

Iterating Over the Values in a Vector

To access each element in a vector in turn, we would iterate through all of
the elements rather than use indices to access one at a time. Listing 8-7
shows how to use a for loop to get immutable references to each element

in a vector of 132 values and print them.

let v = vec![100, 32, 57];
for 1 in &v {
println!("{i}");

Listing 8-7: Printing each element in a vector by iterating over the elements

using a for loop

We can also iterate over mutable references to each element in a mutable

vector in order to make changes to all the elements. The for loop in Listi

https://doc.rust-lang.org/nomicon/vec/vec.html

ng 8-8 will add 50 to each element.

let mut v = vec![100, 32, 57];
for i in &mut v {
*1 += 50;

Listing 8-8: Iterating over mutable references to elements in a vector

To change the value that the mutable reference refers to, we have to use
the * dereference operator to get to the value in i1 before we can use the
+= operator. We’ll talk more about the dereference operator in “Following

the Pointer to the Value” on page 322.

Iterating over a vector, whether immutably or mutably, is safe because of
the borrow checker’s rules. If we attempted to insert or remove items in the
for loop bodies in Listing 8-7 and Listing 8-8, we would get a compiler
error similar to the one we got with the code in Listing 8-6. The reference to
the vector that the for loop holds prevents simultaneous modification of

the whole vector.
Using an Enum to Store Multiple Types

Vectors can only store values that are of the same type. This can be
inconvenient; there are definitely use cases for needing to store a list of

items of different types. Fortunately, the variants of an enum are defined

under the same enum type, so when we need one type to represent elements

of different types, we can define and use an enum!

For example, say we want to get values from a row in a spreadsheet in
which some of the columns in the row contain integers, some floating-point
numbers, and some strings. We can define an enum whose variants will
hold the different value types, and all the enum variants will be considered
the same type: that of the enum. Then we can create a vector to hold that
enum and so, ultimately, hold different types. We’ve demonstrated this in Li

sting 8-9.

enum SpreadsheetCell {
Int(132),
Float(f64),
Text(String),

let row = vec!]|
SpreadsheetCell: :Int(3),
SpreadsheetCell: :Text(String::from("blue")),
SpreadsheetCell: :Float(10.12),

1;

Listing 8-9: Defining an enum to store values of different types in one

vector

Rust needs to know what types will be in the vector at compile time so it
knows exactly how much memory on the heap will be needed to store each
element. We must also be explicit about what types are allowed in this
vector. If Rust allowed a vector to hold any type, there would be a chance
that one or more of the types would cause errors with the operations
performed on the elements of the vector. Using an enum plus a match
expression means that Rust will ensure at compile time that every possible

case is handled, as discussed in Chapter 6.

If you don’t know the exhaustive set of types a program will get at
runtime to store in a vector, the enum technique won’t work. Instead, you

can use a trait object, which we’ll cover in Chapter 17.

Now that we’ve discussed some of the most common ways to use
vectors, be sure to review the API documentation for all of the many useful
methods defined on Vec<T> by the standard library. For example, in

addition to push,a pop method removes and returns the last element.
Dropping a Vector Drops Its Elements

Like any other struct , a vector is freed when it goes out of scope, as

annotated in Listing 8-10.

let v = vec![1, 2, 3, 4];

// do stuff with v
} // <- v goes out of scope and is freed here

Listing 8-10: Showing where the vector and its elements are dropped

When the vector gets dropped, all of its contents are also dropped,
meaning the integers it holds will be cleaned up. The borrow checker
ensures that any references to contents of a vector are only used while the

vector itself is valid.

Let’s move on to the next collection type: String!

Storing UTF-8 Encoded Text with Strings

We talked about strings in Chapter 4, but we’ll look at them in more depth
now. New Rustaceans commonly get stuck on strings for a combination of
three reasons: Rust’s propensity for exposing possible errors, strings being a
more complicated data structure than many programmers give them credit
for, and UTF-8. These factors combine in a way that can seem difficult

when you’re coming from other programming languages.

We discuss strings in the context of collections because strings are
implemented as a collection of bytes, plus some methods to provide useful
functionality when those bytes are interpreted as text. In this section, we’ll

talk about the operations on String that every collection type has, such

as creating, updating, and reading. We’ll also discuss the ways in which
String is different from the other collections, namely how indexing into
a String is complicated by the differences between how people and

computers interpret String data.
What Is a String?

We’ll first define what we mean by the term string. Rust has only one string
type in the core language, which is the string slice Str that is usually seen
in its borrowed form &sStr . In Chapter 4, we talked about string slices,
which are references to some UTF-8 encoded string data stored elsewhere.
String literals, for example, are stored in the program’s binary and are

therefore string slices.

The String type, which is provided by Rust’s standard library rather
than coded into the core language, is a growable, mutable, owned, UTF-8
encoded string type. When Rustaceans refer to “strings” in Rust, they might
be referring to either the String or the string slice &Str types, not just
one of those types. Although this section is largely about String, both
types are used heavily in Rust’s standard library, and both String and

string slices are UTF-8 encoded.
Creating a New String

Many of the same operations available with Vec<T> are available with

String as well because String is actually implemented as a wrapper

around a vector of bytes with some extra guarantees, restrictions, and
capabilities. An example of a function that works the same way with
Vec<T> and String isthe new function to create an instance, shown

in Listing 8-11.

let mut s = String: :new();

Listing 8-11: Creating a new, empty String

This line creates a new, empty string called s, into which we can then
load data. Often, we’ll have some initial data with which we want to start
the string. For that, we use the to_string method, which is available on
any type that implements the Display trait, as string literals do. Listing 8

-12 shows two examples.

let data = "initial contents";
let s = data.to_string();
// The method also works on a literal directly:

let s = "initial contents".to_string();

Listing 8-12: Using the to_string method to create a String from a

string literal

This code creates a string containing initial contents.

We can also use the function String: :from to createa String
from a string literal. The code in Listing 8-13 is equivalent to the code in Li

sting 8-12 that uses to_string.

let s = String::from("initial contents");

Listing 8-13: Using the String: :from function to createa String

from a string literal

Because strings are used for so many things, we can use many different
generic APIs for strings, providing us with a lot of options. Some of them
can seem redundant, but they all have their place! In this case,

String::from and to_string do the same thing, so which one you

choose is a matter of style and readability.

Remember that strings are UTF-8 encoded, so we can include any

properly encoded data in them, as shown in Listing 8-14.

let hello = String::from("Sde oMNudl");
let hello = String::from("Dobry den");
let hello = String::from("Hello");

let hello = String::from("ni7¢");

let hello = String::from(" "),
let hello = String::from(" "),

let
let
let
let
let

hello
hello
hello
hello
hello

String:
String:
String:
String:
String:

:from(" "),
:from(" ");
:from("0la");
:from("3gpascTBYiiTEe");
:from("Hola");

Listing 8-14: Storing greetings in different languages in strings

All of these are valid String values.

Updating a String

A String can grow in size and its contents can change, just like the
contents of a Vec<T> | if you push more data into it. In addition, you can
conveniently use the + operator or the format! macro to concatenate

String values.

Appending to a String with push_str and push

We can grow a String by using the push_str method to append a

string slice, as shown in Listing 8-15.

let mut s = String::from("foo");
S.push_str("bar");

Listing 8-15: Appending a string slice to a String using the

push_str method

After these two lines, s will contain foobar . The push_str
method takes a string slice because we don’t necessarily want to take
ownership of the parameter. For example, in the code in Listing 8-16, we

want to be able to use s2 after appending its contents to S1 .

let mut s1 = String::from("foo0");
let s2 = "bar";

sl.push_str(s2);

println!("s2 is {s2}");

Listing 8-16: Using a string slice after appending its contents to a

String

If the push_str method took ownership of s2, we wouldn’t be able

to print its value on the last line. However, this code works as we’d expect!

The push method takes a single character as a parameter and adds it to
the String . Listing 8-17 adds the letter [toa String using the push
method.

let mut s = String::from("1lo");
s.push('1l");

Listing 8-17: Adding one character to a String value using push

As aresult, s will contain 1ol .

Concatenation with the + Operator or the format! Macro

Often, you’ll want to combine two existing strings. One way to do so is to

use the + operator, as shown in Listing 8-18.

let s1 = String::from("Hello, ");
let s2 = String::from("world!");
let s3 = s1 + &s2; // note s1 has been moved hert¢

4

Listing 8-18: Using the + operator to combine two String values into a

new String value

The string s3 will contain Hello, world! . Thereason s1 isno
longer valid after the addition, and the reason we used a reference to s2,
has to do with the signature of the method that’s called when we use the +
operator. The + operator uses the add method, whose signature looks

something like this:

fn add(self, s: &str) -> String {

In the standard library, you’ll see add defined using generics and
associated types. Here, we’ve substituted in concrete types, which is what
happens when we call this method with String values. We’ll discuss
generics in Chapter 10. This signature gives us the clues we need in order to

understand the tricky bits of the + operator.

First, s2 has an &, meaning that we’re adding a reference of the
second string to the first string. This is because of the s parameter in the
add function: we can only adda &str toa String; we can’t add two
String values together. But wait—the type of &s2 is &String, not
&str, as specified in the second parameter to add . So why does Listing

8-18 compile?

The reason we’re able to use &s2 in the call to add is that the
compiler can coerce the &String argumentinto a &str . When we call
the add method, Rust uses a deref coercion, which here turns &s2 into
&s2[..] . We’ll discuss deref coercion in more depth in Chapter 15.
Because add does not take ownership of the s parameter, s2 will still

be a valid String after this operation.

Second, we can see in the signature that add takes ownership of self
because self does not have an & . This means s1 in Listing 8-18 will
be moved into the add call and will no longer be valid after that. So,
although let s3 = s1 + &s2; looks like it will copy both strings

and create a new one, this statement actually takes ownership of s1,

appends a copy of the contents of s2, and then returns ownership of the
result. In other words, it looks like it’s making a lot of copies, but it isn’t;

the implementation is more efficient than copying.

If we need to concatenate multiple strings, the behavior of the +

operator gets unwieldy:

let s1 = String::from("tic");
let s2 = String::from("tac");
let s3 = String::from("toe");
let s = s1 + "-" + &s2 + "-" + &S3;

At this point, s will be tic-tac-toe . Withall of the + and "
characters, it’s difficult to see what’s going on. For combining strings in

more complicated ways, we can instead use the format! macro:

let s1 = String::from("tic");
let s2 = String::from("tac");
let s3 = String::from("toe");

let s = format!("{s1}-{s2}-{s3}");

This code also sets s to tic-tac-toe.The format! macro

works like println! , butinstead of printing the output to the screen, it

returns a String with the contents. The version of the code using
format! is much easier to read, and the code generated by the
format! macro uses references so that this call doesn’t take ownership

of any of its parameters.
Indexing into Strings

In many other programming languages, accessing individual characters in a
string by referencing them by index is a valid and common operation.
However, if you try to access parts of a String using indexing syntax in

Rust, you’ll get an error. Consider the invalid code in Listing 8-19.

let s1 = String::from("hello");
let h = s1[0];

Listing 8-19: Attempting to use indexing syntax witha String

This code will result in the following error:

error[EO277]: the type "String cannot be indexe
--> src/main.rs:3:13
3 let h = s1[0];
ANAAN-"String” cannot be indexed

= help: the trait "Index<{integer}>" 1is not im
"String’

»

The error and the note tell the story: Rust strings don’t support indexing.
But why not? To answer that question, we need to discuss how Rust stores

strings in memory.
Internal Representation

A String is a wrapper over a Vec<u8> . Let’s look at some of our

properly encoded UTF-8 example strings from Listing 8-14. First, this one:

let hello = String::from("Hola");

In this case, 1en will be 4, which means the vector storing the string
"Hola" is 4 bytes long. Each of these letters takes one byte when
encoded in UTF-8. The following line, however, may surprise you (note
that this string begins with the capital Cyrillic letter Ze, not the Arabic

number 3):
let hello = String::from("3gpaBcTtBYyinnTe");

If you were asked how long the string is, you might say 12. In fact,

Rust’s answer is 24: that’s the number of bytes it takes to encode

“3ppasctBynte” in UTF-8, because each Unicode scalar value in that string
takes 2 bytes of storage. Therefore, an index into the string’s bytes will not
always correlate to a valid Unicode scalar value. To demonstrate, consider

this invalid Rust code:

let hello = "3agpaBcTBYyKnTe";
let answer = &hello[0];

You already know that answer will not be 3, the first letter. When
encoded in UTF-8, the first byte of 3 is 208 and the second is 151, so
it would seem that answer should in fact be 208, but 208 is nota
valid character on its own. Returning 208 is likely not what a user would
want if they asked for the first letter of this string; however, that’s the only
data that Rust has at byte index 0. Users generally don’t want the byte value
returned, even if the string contains only Latin letters: if &"hello"[0]

were valid code that returned the byte value, it would return 104 , not h.

The answer, then, is that to avoid returning an unexpected value and
causing bugs that might not be discovered immediately, Rust doesn’t
compile this code at all and prevents misunderstandings early in the

development process.

Bytes and Scalar Values and Grapheme Clusters! Oh My!

Another point about UTF-8 is that there are actually three relevant ways to
look at strings from Rust’s perspective: as bytes, scalar values, and

grapheme clusters (the closest thing to what we would call letters).

If we look at the Hindi word written in the Devanagari script, it is

stored as a vector of u8 values that looks like this:

[224, 164, 168, 224, 164, 174, 224, 164, 184, 22
164, 164, 224, 165, 135]

That’s 18 bytes and is how computers ultimately store this data. If we
look at them as Unicode scalar values, which are what Rust’s char type

is, those bytes look like this:

There are six char values here, but the fourth and sixth are not letters:
they’re diacritics that don’t make sense on their own. Finally, if we look at
them as grapheme clusters, we’d get what a person would call the four

letters that make up the Hindi word:

Rust provides different ways of interpreting the raw string data that
computers store so that each program can choose the interpretation it needs,

no matter what human language the data is in.

A final reason Rust doesn’t allow us to index into a String to geta
character is that indexing operations are expected to always take constant
time (O(1)). But it isn’t possible to guarantee that performance with a

String, because Rust would have to walk through the contents from the

beginning to the index to determine how many valid characters there were.
Slicing Strings

Indexing into a string is often a bad idea because it’s not clear what the
return type of the string-indexing operation should be: a byte value, a
character, a grapheme cluster, or a string slice. If you really need to use

indices to create string slices, therefore, Rust asks you to be more specific.

Rather than indexing using [] with a single number, you can use []

with a range to create a string slice containing particular bytes:

let hello = "3agpaBcTBYyKnTe";

let s = &hello[0..4];

Here, S will be a &Str that contains the first four bytes of the string.

Earlier, we mentioned that each of these characters was two bytes, which

means S will be 3 .

If we were to try to slice only part of a character’s bytes with something
like &hello[0..1], Rust would panic at runtime in the same way as if

an invalid index were accessed in a vector:

thread 'main' panicked at 'byte index 1 is not a
it is inside '3' (bytes 0..2) of “3agpasBcTByiiTe ',

4

You should use caution when creating string slices with ranges, because

doing so can crash your program.
Methods for Iterating Over Strings

The best way to operate on pieces of strings is to be explicit about whether
you want characters or bytes. For individual Unicode scalar values, use the
chars method. Calling chars on “3g” separates out and returns two

values of type char , and you can iterate over the result to access each

element:

for ¢ in "3a".chars() {
println! ("{c}");

This code will print the following:

Alternatively, the bytes method returns each raw byte, which might be

appropriate for your domain:

for b in "3a".bytes() {
println! ("{b}");

This code will print the four bytes that make up this string:

208
151
208
180

But be sure to remember that valid Unicode scalar values may be made

up of more than one byte.

Getting grapheme clusters from strings, as with the Devanagari script, is
complex, so this functionality is not provided by the standard library. Crates

are available at https://crates.io if this is the functionality you need.

https://crates.io/

Strings Are Not So Simple

To summarize, strings are complicated. Different programming languages
make different choices about how to present this complexity to the
programmer. Rust has chosen to make the correct handling of String
data the default behavior for all Rust programs, which means programmers
have to put more thought into handling UTF-8 data up front. This trade-off
exposes more of the complexity of strings than is apparent in other
programming languages, but it prevents you from having to handle errors

involving non-ASCII characters later in your development life cycle.

The good news is that the standard library offers a lot of functionality
built off the String and &Str types to help handle these complex
situations correctly. Be sure to check out the documentation for useful
methods like contains for searching in a string and replace for

substituting parts of a string with another string.

Let’s switch to something a bit less complex: hash maps!

Storing Keys with Associated Values in Hash
Maps

The last of our common collections is the hash map. The type
HashMap<K, V> stores a mapping of keys of type K to values of type

V using a hashing function, which determines how it places these keys and

values into memory. Many programming languages support this kind of
data structure, but they often use a different name, such as hash, map,

object, hash table, dictionary, or associative array, just to name a few.

Hash maps are useful when you want to look up data not by using an
index, as you can with vectors, but by using a key that can be of any type.
For example, in a game, you could keep track of each team’s score in a hash
map in which each key is a team’s name and the values are each team’s

score. Given a team name, you can retrieve its score.

We’ll go over the basic API of hash maps in this section, but many more
goodies are hiding in the functions defined on HashMap<K, V> by the
standard library. As always, check the standard library documentation for

more information.
Creating a New Hash Map

One way to create an empty hash map is to use new and to add elements
with insert . In Listing 8-20, we’re keeping track of the scores of two
teams whose names are Blue and Yellow. The Blue team starts with 10

points, and the Yellow team starts with 50.

use std::collections::HashMap;

let mut scores = HashMap: :new();

scores.insert(String::from('"Blue"), 10);
scores.insert(String::from("Yellow"), 50);

Listing 8-20: Creating a new hash map and inserting some keys and values

Note that we need to first use the HashMap from the collections
portion of the standard library. Of our three common collections, this one is
the least often used, so it’s not included in the features brought into scope
automatically in the prelude. Hash maps also have less support from the

standard library; there’s no built-in macro to construct them, for example.

Just like vectors, hash maps store their data on the heap. This HashMap
has keys of type String and values of type 132 . Like vectors, hash
maps are homogeneous: all of the keys must have the same type, and all of

the values must have the same type.
Accessing Values in a Hash Map

We can get a value out of the hash map by providing its key to the get

method, as shown in Listing 8-21.

use std::collections: :HashMap;
let mut scores = HashMap: :new();

scores.insert(String::from("Blue"), 10);

scores.insert(String::from("Yellow"), 50);

let team_name = String::from("Blue");

let score = scores.get(&team_name).copied().unwr:
Listing 8-21: Accessing the score for the Blue team stored in the hash map

Here, score will have the value that’s associated with the Blue team,
and the result will be 10 . The get method returns an Option<&V>; if
there’s no value for that key in the hash map, get will return None . This
program handles the Option by calling copied to get an
Option<i32> rather than an Option<&i32>,then unwrap_or to

set score tozeroif scores doesn’t have an entry for the key.

We can iterate over each key-value pair in a hash map in a similar

manner as we do with vectors, using a for loop:

use std::collections: :HashMap;
let mut scores = HashMap: :new();

scores.insert(String::from("Blue"), 10);
scores.insert(String::from("Yellow"), 50);

for (key, value) in &scores {

println! ("{key}: {value}");

This code will print each pair in an arbitrary order:

Yellow: 50
Blue: 10

Hash Maps and Ownership

For types that implement the Copy trait, like 132, the values are copied
into the hash map. For owned values like String, the values will be
moved and the hash map will be the owner of those values, as demonstrated

in Listing 8-22.

use std::collections::HashMap;

let field_name = String::from("Favorite color");
let field_value = String::from("Blue");

let mut map = HashMap::new();
map.insert(field_name, field_value);

// field_name and field_value are invalid at thai:
// using them and see what compiler error you gef

4

Listing 8-22: Showing that keys and values are owned by the hash map

once they’re inserted

We aren’t able to use the variables field name and field value

after they’ve been moved into the hash map with the call to insert.

If we insert references to values into the hash map, the values won’t be
moved into the hash map. The values that the references point to must be
valid for at least as long as the hash map is valid. We’ll talk more about

these issues in “Validating References with Lifetimes” on page 201.
Updating a Hash Map

Although the number of key and value pairs is growable, each unique key
can only have one value associated with it at a time (but not vice versa: for
example, both the Blue team and the Yellow team could have the value 10

stored in the scores hash map).

When you want to change the data in a hash map, you have to decide
how to handle the case when a key already has a value assigned. You could
replace the old value with the new value, completely disregarding the old
value. You could keep the old value and ignore the new value, only adding
the new value if the key doesn't already have a value. Or you could
combine the old value and the new value. Let’s look at how to do each of

these!

Overwriting a Value

If we insert a key and a value into a hash map and then insert that same key
with a different value, the value associated with that key will be replaced.
Even though the code in Listing 8-23 calls insert twice, the hash map
will only contain one key-value pair because we’re inserting the value for

the Blue team’s key both times.

use std::collections::HashMap;

let mut scores = HashMap::new();

scores.insert(String::from("Blue"), 10);
scores.insert(String::from("Blue"), 25);

println!("{:?}", scores);

Listing 8-23: Replacing a value stored with a particular key

This code will print {"Blue": 25} . The original value of 10 has been

overwritten.
Adding a Key and Value Only If a Key Isn’t Present

It’s common to check whether a particular key already exists in the hash

map with a value and then to take the following actions: if the key does

exist in the hash map, the existing value should remain the way it is; if the

key doesn’t exist, insert it and a value for it.

Hash maps have a special API for this called entry that takes the key
you want to check as a parameter. The return value of the entry method
is an enum called Entry that represents a value that might or might not
exist. Let’s say we want to check whether the key for the Yellow team has a
value associated with it. If it doesn’t, we want to insert the value 50 , and
the same for the Blue team. Using the entry API, the code looks like List

ing 8-24.

use std::collections::HashMap;

let mut scores = HashMap: :new();
scores.insert(String::from("Blue"), 10);

scores.entry(String::from("Yellow")).or_insert(5(
scores.entry(String::from("Blue")).or_insert(50)

println!("{:?}", scores);

Listing 8-24: Using the entry method to only insert if the key does not

already have a value

The or_insert method on Entry is defined to return a mutable
reference to the value for the corresponding Entry key if that key exists,
and if not, it inserts the parameter as the new value for this key and returns
a mutable reference to the new value. This technique is much cleaner than
writing the logic ourselves and, in addition, plays more nicely with the

borrow checker.

Running the code in Listing 8-24 will print {"Yellow": 50,
"Blue": 10} . The firstcall to entry will insert the key for the
Yellow team with the value 50 because the Yellow team doesn’t have a
value already. The second call to entry will not change the hash map

because the Blue team already has the value 10 .
Updating a Value Based on the Old Value

Another common use case for hash maps is to look up a key’s value and

then update it based on the old value. For instance, Listing 8-25 shows code

that counts how many times each word appears in some text. We use a hash
map with the words as keys and increment the value to keep track of how
many times we’ve seen that word. If it’s the first time we’ve seen a word,

we’ll first insert the value 0O .

use std::collections::HashMap;

let text = "hello world wonderful world";

let mut map = HashMap::new();

for word in text.split_whitespace() {
let count = map.entry(word).or_insert(0);
*count += 1;

println!("{:?}", map);

Listing 8-25: Counting occurrences of words using a hash map that stores

words and counts

This code will print {"world": 2, "hello": 1,
"wonderful": 1} . You might see the same key-value pairs printed in a
different order: recall from “Accessing Values in a Hash Map” on page 155

that iterating over a hash map happens in an arbitrary order.

The split_whitespace method returns an iterator over subslices,
separated by whitespace, of the value in text . The or_insert
method returns a mutable reference (&mut V) to the value for the
specified key. Here, we store that mutable reference in the count
variable, so in order to assign to that value, we must first dereference
count using the asterisk (*). The mutable reference goes out of scope at
the end of the for loop, so all of these changes are safe and allowed by

the borrowing rules.

Hashing Functions

By default, HashMap uses a hashing function called SipHash that can
provide resistance to denial-of-service (DoS) attacks involving hash tables.
This is not the fastest hashing algorithm available, but the trade-off for
better security that comes with the drop in performance is worth it. If you
profile your code and find that the default hash function is too slow for your
purposes, you can switch to another function by specifying a different
hasher. A hasher is a type that implements the BuildHasher trait. We’ll
talk about traits and how to implement them in Chapter 10. You don’t
necessarily have to implement your own hasher from scratch; https://crates.
io has libraries shared by other Rust users that provide hashers

implementing many common hashing algorithms.

Summary

Vectors, strings, and hash maps will provide a large amount of functionality
necessary in programs when you need to store, access, and modify data.

Here are some exercises you should now be equipped to solve:

1. Given a list of integers, use a vector and return the median (when sorted,
the value in the middle position) and mode (the value that occurs most
often; a hash map will be helpful here) of the list.

2. Convert strings to pig latin. The first consonant of each word is moved to

the end of the word and ay is added, so first becomes irst-fay. Words that

https://crates.io/

start with a vowel have hay added to the end instead (apple becomes
apple-hay). Keep in mind the details about UTF-8 encoding!

3. Using a hash map and vectors, create a text interface to allow a user to
add employee names to a department in a company; for example, “Add
Sally to Engineering” or “Add Amir to Sales.” Then let the user retrieve
a list of all people in a department or all people in the company by

department, sorted alphabetically.

The standard library API documentation describes methods that vectors,

strings, and hash maps have that will be helpful for these exercises!

We’re getting into more complex programs in which operations can fail,

so it’s a perfect time to discuss error handling. We’ll do that next!

OceanofPDF.com

https://oceanofpdf.com/

9
ERROR HANDLING

Errors are a fact of life in software, so Rust has a number of

features for handling situations in which something goes
wrong. In many cases, Rust requires you to acknowledge the
/ possibility of an error and take some action before your code
will compile. This requirement makes your program more
robust by ensuring that you’ll discover errors and handle

them appropriately before deploying your code to production!

Rust groups errors into two major categories: recoverable and
unrecoverable errors. For a recoverable error, such as a file not found error,
we most likely just want to report the problem to the user and retry the
operation. Unrecoverable errors are always symptoms of bugs, such as
trying to access a location beyond the end of an array, and so we want to

immediately stop the program.

Most languages don’t distinguish between these two kinds of errors and
handle both in the same way, using mechanisms such as exceptions. Rust
doesn’t have exceptions. Instead, it has the type Result<T, E> for
recoverable errors and the panic! macro that stops execution when the

program encounters an unrecoverable error. This chapter covers calling

panic! first and then talks about returning Result<T, E> values.
Additionally, we’ll explore considerations when deciding whether to try to

recover from an error or to stop execution.

Unrecoverable Errors with panic!

Sometimes bad things happen in your code, and there’s nothing you can do
about it. In these cases, Rust has the panic! macro. There are two ways
to cause a panic in practice: by